Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

University of Massachusetts Amherst

Self-assembly

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Self-Limiting Morphologies In Geometrically Frustrated Assemblies, Douglas M. Hall Apr 2023

Self-Limiting Morphologies In Geometrically Frustrated Assemblies, Douglas M. Hall

Doctoral Dissertations

Geometrically frustrated assembly, where locally preferred motifs are incompatible with constraints on global ordering of the assembly, may result in a super-extensive energy penalty to assembly growth and self-limitation of the assembly size. Using theory and simulation, we study how this mechanism may also shape the assembly's boundary and its interior packing, which are distinct morphological changes. In Chapter 1, we provide some background and a theoretical framework for understanding self-limiting behavior due to geometric frustration. Three distinct projects are detailed in the subsequent chapters: original numerical results are presented on competing responses to frustration in helical bundles made of …


Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy Mar 2022

Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy

Doctoral Dissertations

Block copolymer (BCP) melts undergo microphase seperation and form ordered soft matter crystals with varying domain shapes and symmetries. We study the con- nection between diblock copolymer molecular designs and thermodynamic selection of ordered crystals by modeling features of variable sub-domain geometry filled with individual blocks within non-canonical sphere-like and network phases that together with layered, cylindrical and canonical spherical phases forms “natural forms” of self- assembled amphiphilic soft matter at large. First, we present a model to revise our understanding of optimal Frank-Kasper sphere-like morphologies by advancing the- ory to account for varying domain volumes. We then develop generic …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Distortion-Controlled Isotropic Swelling And Self-Assembly Of Triply-Periodic Minimal Surfaces, Carlos M. Duque Dec 2020

Distortion-Controlled Isotropic Swelling And Self-Assembly Of Triply-Periodic Minimal Surfaces, Carlos M. Duque

Doctoral Dissertations

In the first part of this thesis, I propose a method that allows us to construct optimal swelling patterns that are compatible with experimental constraints. This is done using a greedy algorithm that systematically increases the perimeter of the target surface with the help of minimum length cuts. This reduces the areal distortion that comes from the changing Gaussian curvature of the sheet. The results of our greedy cutting algorithm are tested on surfaces of constant and varying Gaussian curvature, and are additionally validated with finite thickness simulations using a modified Seung-Nelson model. In the second part of the thesis, …


Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca Jul 2019

Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca

Doctoral Dissertations

This dissertation describes the synthesis and characterization of novel monomers and (co)polymer zwitterions that incorporate trialkylsulfonium cations. The novel materials presented herein constitute a unique type of polymer zwitterions that exhibit salt- and temperature-dependent water solubility as well as inherent reactivity. The behavior of these polymers in aqueous solutions, as nanostructures, and at liquid-liquid interfaces was studied; in all cases, the inherent reactivity of the polymers was harnessed towards the fabrication of novel polymers and soft materials. Following an introductory chapter, Chapter 2 describes the synthesis of sulfonium sulfonate monomers and polymer zwitterions. Both styrenic and methacrylic monomers were synthesized …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


Assembly Of Particles Onto Rigid Cylinders And Flexible Membranes: Probing Effects Of Surface Curvature And Deformation, Derek Wood Nov 2017

Assembly Of Particles Onto Rigid Cylinders And Flexible Membranes: Probing Effects Of Surface Curvature And Deformation, Derek Wood

Doctoral Dissertations

In this thesis we explore two specific topics within the broad field of particle adhesion. First, we examine the effect of substrate shape and geometry on the self assembly of adsorbed particles, by performing molecular dynamics simulations of interacting particles constrained to the surface of cylinders of varying diameters. We find the diameter of the cylinder imposes a constraint on the shape and crystallographic orientation of the self-assembled lattice, essentially determining the optimal arrangement of particles a priori. We propose a simple one-dimensional model to explain the optimal arrangement of particles as a function of the particle interaction potential …


Reducing The Size Sale Of The Block Copolymer Microdomains And Morphology Study Of Brush Block Copolymers Containing Homopolymer, Gajin Jeong Mar 2017

Reducing The Size Sale Of The Block Copolymer Microdomains And Morphology Study Of Brush Block Copolymers Containing Homopolymer, Gajin Jeong

Doctoral Dissertations

Block copolymers (BCPs), due to their ability to self-assemble into periodic nanoscale morphologies, have been extensively studied over the past few decades. The thermodynamic parameters governing self-assembly of BCPs generally leads to periodic morphologies with characteristic length scales ranging from 10 to 100 nm. Several applications have been demonstrated utilizing BCPs as a template for the fabrication of nanostructured materials. Fabricating structures beyond the 10-100 nm range, remains a challenge and constitutes one of the goals of the proposed research. This dissertation is divided into two parts. The first focuses on the sub 10 nm length scale, when by chemically …


Contact Angles And Contact Lines Around Particles At Isotropic And Anisotropic Liquid Interfaces, Nesrin Senbil Nov 2015

Contact Angles And Contact Lines Around Particles At Isotropic And Anisotropic Liquid Interfaces, Nesrin Senbil

Doctoral Dissertations

Liquid interfaces, capillarity and self-assembly of particles at interfaces are important in nature and technology. When a particle is adsorbed to a liquid interface, the contact line of the particle with the liquid interface and the associated contact angle are the crucial parameters that drive assembly of the particles. We looked at how the shape of the liquid interface and the shape of the particle affect the contact angle and the shape of the contact line. We used millimeter-sized PDMS-coated glass spheres and measured the contact angles at isotropic (planar) and anisotropic interfaces (saddle and cylindrical in shape). Anisotropy of …


Elasticity And Geometry In Curved-Filament Assemblies, Luis Cajamarca Ospina Nov 2015

Elasticity And Geometry In Curved-Filament Assemblies, Luis Cajamarca Ospina

Doctoral Dissertations

In this dissertation we explore the effect of shape, mechanics and geometry in assemblies of tubular filaments by introducing the notion of cohesive contact. We first study the optimal geometry of cohesive interactions in straight flexible tubes by considering two interaction potentials. We find filaments adopt a locally skewed configuration, associated with a twist angle. The interaction energy decreases with the twist angle and ground states are found to be twisted. For pair-wise interactions, we find a generic behavior in the profile of the cohesive energy where the geometry of close-packed double helices dictates the shape of the assembly. By …


Self-Assembly Of Nanoparticles At Liquid-Liquid Interfaces, Kan Du Sep 2010

Self-Assembly Of Nanoparticles At Liquid-Liquid Interfaces, Kan Du

Open Access Dissertations

In this thesis, we studied the self-assembly of nanoparticles at liquid metal-water interfaces and oil-water interfaces. We demonstrated a simple approach to form nanostructured electronic devices by self-assembly of nanoparticles at liquid metal surfaces. In this approach, two liquid-metal droplets, which were coated with a monolayer of ligand-stabilized nanoparticles, were brought into contact. They did not coalesce but instead remained separated by the nanoparticles assembled at the interface. Devices formed by this method showed electron transport between droplets that was characteristic of the Coulomb blockade, where current was suppressed below a tunable threshold voltage because of the energy of charging …