Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

2020

Deep learning

Institution
Publication
Publication Type

Articles 1 - 30 of 114

Full-Text Articles in Entire DC Network

A Deep Machine Learning Approach For Predicting Freeway Work Zone Delay Using Big Data, Abdullah Shabarek Dec 2020

A Deep Machine Learning Approach For Predicting Freeway Work Zone Delay Using Big Data, Abdullah Shabarek

Dissertations

The introduction of deep learning and big data analytics may significantly elevate the performance of traffic speed prediction. Work zones become one of the most critical factors causing congestion impact, which reduces the mobility as well as traffic safety. A comprehensive literature review on existing work zone delay prediction models (i.e., parametric, simulation and non-parametric models) is conducted in this research. The research shows the limitations of each model. Moreover, most previous modeling approaches did not consider user delay for connected freeways when predicting traffic speed under work zone conditions. This research proposes Deep Artificial Neural Network (Deep ANN) and …


Leveraging The Inductive Bias Of Large Language Models For Abstract Textual Reasoning, Christopher Michael Rytting Dec 2020

Leveraging The Inductive Bias Of Large Language Models For Abstract Textual Reasoning, Christopher Michael Rytting

Theses and Dissertations

Large natural language models (such as GPT-2 or T5) demonstrate impressive abilities across a range of general NLP tasks. Here, we show that the knowledge embedded in such models provides a useful inductive bias, not just on traditional NLP tasks, but also in the nontraditional task of training a symbolic reasoning engine. We observe that these engines learn quickly and generalize in a natural way that reflects human intuition. For example, training such a system to model block-stacking might naturally generalize to stacking other types of objects because of structure in the real world that has been partially captured by …


Methods For Generative Adversarial Output Enhancement, Michael B. Brodie Dec 2020

Methods For Generative Adversarial Output Enhancement, Michael B. Brodie

Theses and Dissertations

Generative Adversarial Networks (GAN) learn to synthesize novel samples for a given data distribution. While GANs can train on diverse data of various modalities, the most successful use cases to date apply GANs to computer vision tasks. Despite significant advances in training algorithms and network architectures, GANs still struggle to consistently generate high-quality outputs after training. We present a series of papers that improve GAN output inference qualitatively and quantitatively. The first chapter, Alpha Model Domination, addresses a related subfield of Multiple Choice Learning, which -- like GANs -- aims to generate diverse sets of outputs. The next chapter, CoachGAN, …


Survey On Deep Neural Networks In Speech And Vision Systems, M. Alam, Manar D. Samad, Lasitha Vidyaratne, ‪Alexander Glandon, Khan M. Iftekharuddin Dec 2020

Survey On Deep Neural Networks In Speech And Vision Systems, M. Alam, Manar D. Samad, Lasitha Vidyaratne, ‪Alexander Glandon, Khan M. Iftekharuddin

Computer Science Faculty Research

This survey presents a review of state-of-the-art deep neural network architectures, algorithms, and systems in speech and vision applications. Recent advances in deep artificial neural network algorithms and architectures have spurred rapid innovation and development of intelligent speech and vision systems. With availability of vast amounts of sensor data and cloud computing for processing and training of deep neural networks, and with increased sophistication in mobile and embedded technology, the next-generation intelligent systems are poised to revolutionize personal and commercial computing. This survey begins by providing background and evolution of some of the most successful deep learning models for intelligent …


Semiotic Aggregation In Deep Learning, Bogdan Muşat, Răzvan Andonie Dec 2020

Semiotic Aggregation In Deep Learning, Bogdan Muşat, Răzvan Andonie

All Faculty Scholarship for the College of the Sciences

Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In …


Language-Driven Region Pointer Advancement For Controllable Image Captioning, Annika Lindh, Robert J. Ross, John D. Kelleher Dec 2020

Language-Driven Region Pointer Advancement For Controllable Image Captioning, Annika Lindh, Robert J. Ross, John D. Kelleher

Conference papers

Controllable Image Captioning is a recent sub-field in the multi-modal task of Image Captioning wherein constraints are placed on which regions in an image should be described in the generated natural language caption. This puts a stronger focus on producing more detailed descriptions, and opens the door for more end-user control over results. A vital component of the Controllable Image Captioning architecture is the mechanism that decides the timing of attending to each region through the advancement of a region pointer. In this paper, we propose a novel method for predicting the timing of region pointer advancement by treating the …


Differential Privacy Protection Over Deep Learning: An Investigation Of Its Impacted Factors, Ying Lin, Ling-Yan Bao, Ze-Minghui Li, Shu-Sheng Si, Chao-Hsien Chu Dec 2020

Differential Privacy Protection Over Deep Learning: An Investigation Of Its Impacted Factors, Ying Lin, Ling-Yan Bao, Ze-Minghui Li, Shu-Sheng Si, Chao-Hsien Chu

Research Collection School Of Computing and Information Systems

Deep learning (DL) has been widely applied to achieve promising results in many fields, but it still exists various privacy concerns and issues. Applying differential privacy (DP) to DL models is an effective way to ensure privacy-preserving training and classification. In this paper, we revisit the DP stochastic gradient descent (DP-SGD) method, which has been used by several algorithms and systems and achieved good privacy protection. However, several factors, such as the sequence of adding noise, the models used etc., may impact its performance with various degrees. We empirically show that adding noise first and clipping second will not only …


Acquisition, Processing, And Analysis Of Video, Audio And Meteorological Data In Multi-Sensor Electronic Beehive Monitoring, Sarbajit Mukherjee Dec 2020

Acquisition, Processing, And Analysis Of Video, Audio And Meteorological Data In Multi-Sensor Electronic Beehive Monitoring, Sarbajit Mukherjee

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In recent years, a widespread decline has been seen in honey bee population and this is widely attributed to colony collapse disorder. Hence, it is of utmost importance that a system is designed to gather relevant information. This will allow for a deeper understanding of the possible reasons behind the above phenomenon to aid in the design of suitable countermeasures.

Electronic Beehive Monitoring is one such way of gathering critical information regarding a colony’s health and behavior without invasive beehive inspections. In this dissertation, we have presented an electronic beehive monitoring system called BeePi that can be placed on top …


Unsupervised Structural Graph Node Representation Learning, Mikel Joaristi Dec 2020

Unsupervised Structural Graph Node Representation Learning, Mikel Joaristi

Boise State University Theses and Dissertations

Unsupervised Graph Representation Learning methods learn a numerical representation of the nodes in a graph. The generated representations encode meaningful information about the nodes' properties, making them a powerful tool for tasks in many areas of study, such as social sciences, biology or communication networks. These methods are particularly interesting because they facilitate the direct use of standard Machine Learning models on graphs. Graph representation learning methods can be divided into two main categories depending on the information they encode, methods preserving the nodes connectivity information, and methods preserving nodes' structural information. Connectivity-based methods focus on encoding relationships between nodes, …


Trace: A Differentiable Approach To Line-Level Stroke Recovery For Offline Handwritten Text, Taylor Neil Archibald Dec 2020

Trace: A Differentiable Approach To Line-Level Stroke Recovery For Offline Handwritten Text, Taylor Neil Archibald

Theses and Dissertations

Stroke order and velocity are helpful features in the fields of signature verification, handwriting recognition, and handwriting synthesis. Recovering these features from offline handwritten text is a challenging and well-studied problem. We propose a new model called TRACE (Trajectory Recovery by an Adaptively-trained Convolutional Encoder). TRACE is a differentiable approach using a convolutional recurrent neural network (CRNN) to infer temporal stroke information from long lines of offline handwritten text with many characters. TRACE is perhaps the first system to be trained end-to-end on entire lines of text of arbitrary width and does not require the use of dynamic exemplars. Moreover, …


Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell Dec 2020

Deep Learning-Based, Passive Fault Tolerant Control Facilitated By A Taxonomy Of Cyber-Attack Effects, Dean C. Wardell

Theses and Dissertations

In the interest of improving the resilience of cyber-physical control systems to better operate in the presence of various cyber-attacks and/or faults, this dissertation presents a novel controller design based on deep-learning networks. This research lays out a controller design that does not rely on fault or cyber-attack detection. Being passive, the controller’s routine operating process is to take in data from the various components of the physical system, holistically assess the state of the physical system using deep-learning networks and decide the subsequent round of commands from the controller. This use of deep-learning methods in passive fault tolerant control …


A Hybrid Approach For Detecting Prerequisite Relations In Multi-Modal Food Recipes, Liangming Pan, Jingjing Chen, Shaoteng Liu, Chong-Wah Ngo, Min-Yen Kan, Tat-Seng Chua Dec 2020

A Hybrid Approach For Detecting Prerequisite Relations In Multi-Modal Food Recipes, Liangming Pan, Jingjing Chen, Shaoteng Liu, Chong-Wah Ngo, Min-Yen Kan, Tat-Seng Chua

Research Collection School Of Computing and Information Systems

Modeling the structure of culinary recipes is the core of recipe representation learning. Current approaches mostly focus on extracting the workflow graph from recipes based on text descriptions. Process images, which constitute an important part of cooking recipes, has rarely been investigated in recipe structure modeling. We study this recipe structure problem from a multi-modal learning perspective, by proposing a prerequisite tree to represent recipes with cooking images at a step-level granularity. We propose a simple-yet-effective two-stage framework to automatically construct the prerequisite tree for a recipe by (1) utilizing a trained classifier to detect pairwise prerequisite relations that fuses …


Lightweight Deep Learning For Botnet Ddos Detection On Iot Access Networks, Eric A. Mccullough Dec 2020

Lightweight Deep Learning For Botnet Ddos Detection On Iot Access Networks, Eric A. Mccullough

MSU Graduate Theses

With the proliferation of the Internet of Things (IoT), computer networks have rapidly expanded in size. While Internet of Things Devices (IoTDs) benefit many aspects of life, these devices also introduce security risks in the form of vulnerabilities which give hackers billions of promising new targets. For example, botnets have exploited the security flaws common with IoTDs to gain unauthorized control of hundreds of thousands of hosts, which they then utilize to carry out massively disruptive distributed denial of service (DDoS) attacks. Traditional DDoS defense mechanisms rely on detecting attacks at their target and deploying mitigation strategies toward the attacker …


Secure And Verifiable Inference In Deep Neural Networks, Guowen Xu, Hongwei Li, Hao Ren, Jianfei Sun, Shengmin Xu, Jianting Ning, Haoming Yang, Kan Yang, Robert H. Deng Dec 2020

Secure And Verifiable Inference In Deep Neural Networks, Guowen Xu, Hongwei Li, Hao Ren, Jianfei Sun, Shengmin Xu, Jianting Ning, Haoming Yang, Kan Yang, Robert H. Deng

Research Collection School Of Computing and Information Systems

Outsourced inference service has enormously promoted the popularity of deep learning, and helped users to customize a range of personalized applications. However, it also entails a variety of security and privacy issues brought by untrusted service providers. Particularly, a malicious adversary may violate user privacy during the inference process, or worse, return incorrect results to the client through compromising the integrity of the outsourced model. To address these problems, we propose SecureDL to protect the model’s integrity and user’s privacy in Deep Neural Networks (DNNs) inference process. In SecureDL, we first transform complicated non-linear activation functions of DNNs to low-degree …


A Study Of Multi-Task And Region-Wise Deep Learning For Food Ingredient Recognition, Jingjing Chen, Bin Zhu, Chong-Wah Ngo, Tat-Seng Chua, Yu-Gang Jiang Dec 2020

A Study Of Multi-Task And Region-Wise Deep Learning For Food Ingredient Recognition, Jingjing Chen, Bin Zhu, Chong-Wah Ngo, Tat-Seng Chua, Yu-Gang Jiang

Research Collection School Of Computing and Information Systems

Food recognition has captured numerous research attention for its importance for health-related applications. The existing approaches mostly focus on the categorization of food according to dish names, while ignoring the underlying ingredient composition. In reality, two dishes with the same name do not necessarily share the exact list of ingredients. Therefore, the dishes under the same food category are not mandatorily equal in nutrition content. Nevertheless, due to limited datasets available with ingredient labels, the problem of ingredient recognition is often overlooked. Furthermore, as the number of ingredients is expected to be much less than the number of food categories, …


New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger Nov 2020

New Methods For Deep Learning Based Real-Valued Inter-Residue Distance Prediction, Jacob Barger

Theses

Background: Much of the recent success in protein structure prediction has been a result of accurate protein contact prediction--a binary classification problem. Dozens of methods, built from various types of machine learning and deep learning algorithms, have been published over the last two decades for predicting contacts. Recently, many groups, including Google DeepMind, have demonstrated that reformulating the problem as a multi-class classification problem is a more promising direction to pursue. As an alternative approach, we recently proposed real-valued distance predictions, formulating the problem as a regression problem. The nuances of protein 3D structures make this formulation appropriate, allowing predictions …


Deepfrag-K: A Fragment-Based Deep Learning Approach For Protein Fold Recognition, Wessam Elhefnawy, Min Li, Jianxin Wang, Yaohang Li Nov 2020

Deepfrag-K: A Fragment-Based Deep Learning Approach For Protein Fold Recognition, Wessam Elhefnawy, Min Li, Jianxin Wang, Yaohang Li

Computer Science Faculty Publications

Background: One of the most essential problems in structural bioinformatics is protein fold recognition. In this paper, we design a novel deep learning architecture, so-called DeepFrag-k, which identifies fold discriminative features at fragment level to improve the accuracy of protein fold recognition. DeepFrag-k is composed of two stages: the first stage employs a multi-modal Deep Belief Network (DBN) to predict the potential structural fragments given a sequence, represented as a fragment vector, and then the second stage uses a deep convolutional neural network (CNN) to classify the fragment vector into the corresponding fold.

Results: Our results show that DeepFrag-k yields …


Deepcommenter: A Deep Code Comment Generation Tool With Hybrid Lexical And Syntactical Information, Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, David Lo Nov 2020

Deepcommenter: A Deep Code Comment Generation Tool With Hybrid Lexical And Syntactical Information, Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, David Lo

Research Collection School Of Computing and Information Systems

As the scale of software projects increases, the code comments are more and more important for program comprehension. Unfortunately, many code comments are missing, mismatched or outdated due to tight development schedule or other reasons. Automatic code comment generation is of great help for developers to comprehend source code and reduce their workload. Thus, we propose a code comment generation tool (DeepCommenter) to generate descriptive comments for Java methods. DeepCommenter formulates the comment generation task as a machine translation problem and exploits a deep neural network that combines the lexical and structural information of Java methods. We implement DeepCommenter in …


Applications Of Ai In Business, Industry, Government, Healthcare, And Environment, University Of Maine Artificial Intelligence Initiative Oct 2020

Applications Of Ai In Business, Industry, Government, Healthcare, And Environment, University Of Maine Artificial Intelligence Initiative

General University of Maine Publications

UMaine AI draws top talent and leverages a distinctive set of capabilities from the University of Maine and other collaborating institutions from across Maine and beyond, while it also recruits world-class talent from across the nation and the world. It is centered at the University of Maine, leveraging the university’s strengths across disciplines, including computing and information sciences, engineering, health and life sciences, business, education, social sciences, and more.


Experimental Comparison Of Features And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Wei Minn Oct 2020

Experimental Comparison Of Features And Classifiers For Android Malware Detection, Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, Wei Minn

Research Collection School Of Computing and Information Systems

Android platform has dominated the smart phone market for years now and, consequently, gained a lot of attention from attackers. Malicious apps (malware) pose a serious threat to the security and privacy of Android smart phone users. Available approaches to detect mobile malware based on machine learning rely on features extracted with static analysis or dynamic analysis techniques. Dif- ferent types of machine learning classi ers (such as support vector machine and random forest) deep learning classi ers (based on deep neural networks) are then trained on extracted features, to produce models that can be used to detect mobile malware. …


Multi-Modal Cooking Workflow Construction For Food Recipes, Liangming Pan, Jingjing Chen, Jianlong Wu, Shaoteng Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang, Tat-Seng Chua Oct 2020

Multi-Modal Cooking Workflow Construction For Food Recipes, Liangming Pan, Jingjing Chen, Jianlong Wu, Shaoteng Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang, Tat-Seng Chua

Research Collection School Of Computing and Information Systems

Understanding food recipe requires anticipating the implicit causal effects of cooking actions, such that the recipe can be converted into a graph describing the temporal workflow of the recipe. This is a non-trivial task that involves common-sense reasoning. However, existing efforts rely on hand-crafted features to extract the workflow graph from recipes due to the lack of large-scale labeled datasets. Moreover, they fail to utilize the cooking images, which constitute an important part of food recipes. In this paper, we build MM-ReS, the first large-scale dataset for cooking workflow construction, consisting of 9,850 recipes with human-labeled workflow graphs. Cooking steps …


Unveiling The Molecular Mechanism Of Sars-Cov-2 Main Protease Inhibition From 137 Crystal Structures Using Algebraic Topology And Deep Learning, Duc Duy Nguyen, Kaifu Gao, Jiahui Chen, Rui Wang, Guo-Wei Wei Sep 2020

Unveiling The Molecular Mechanism Of Sars-Cov-2 Main Protease Inhibition From 137 Crystal Structures Using Algebraic Topology And Deep Learning, Duc Duy Nguyen, Kaifu Gao, Jiahui Chen, Rui Wang, Guo-Wei Wei

Mathematics Faculty Publications

Currently, there is neither effective antiviral drugs nor vaccine for coronavirus disease 2019 (COVID-19) caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to its high conservativeness and low similarity with human genes, SARS-CoV-2 main protease (Mpro) is one of the most favorable drug targets. However, the current understanding of the molecular mechanism of Mpro inhibition is limited by the lack of reliable binding affinity ranking and prediction of existing structures of Mpro-inhibitor complexes. This work integrates mathematics (i.e., algebraic topology) and deep learning (MathDL) to provide a reliable ranking of the binding …


Semantic-Driven Unsupervised Image-To-Image Translation For Distinct Image Domains, Wesley Ackerman Sep 2020

Semantic-Driven Unsupervised Image-To-Image Translation For Distinct Image Domains, Wesley Ackerman

Theses and Dissertations

We expand the scope of image-to-image translation to include more distinct image domains, where the image sets have analogous structures, but may not share object types between them. Semantic-Driven Unsupervised Image-to-Image Translation for Distinct Image Domains (SUNIT) is built to more successfully translate images in this setting, where content from one domain is not found in the other. Our method trains an image translation model by learning encodings for semantic segmentations of images. These segmentations are translated between image domains to learn meaningful mappings between the structures in the two domains. The translated segmentations are then used as the basis …


A Semi-Automated Approach To Medical Image Segmentation Using Conditional Random Field Inference, Yu-Chi Hu Sep 2020

A Semi-Automated Approach To Medical Image Segmentation Using Conditional Random Field Inference, Yu-Chi Hu

Dissertations, Theses, and Capstone Projects

Medical image segmentation plays a crucial role in delivering effective patient care in various diagnostic and treatment modalities. Manual delineation of target volumes and all critical structures is a very tedious and highly time-consuming process and introduce uncertainties of treatment outcomes of patients. Fully automatic methods holds great promise for reducing cost and time, while at the same time improving accuracy and eliminating expert variability, yet there are still great challenges. Legally and ethically, human oversight must be integrated with ”smart tools” favoring a semi-automatic technique which can leverage the best aspects of both human and computer.

In this work …


The Gap Of Semantic Parsing: A Survey On Automatic Math Word Problem Solvers, Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian Dai, Heng Tao Shen Sep 2020

The Gap Of Semantic Parsing: A Survey On Automatic Math Word Problem Solvers, Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian Dai, Heng Tao Shen

Research Collection School Of Computing and Information Systems

Solving mathematical word problems (MWPs) automatically is challenging, primarily due to the semantic gap between human-readable words and machine-understandable logics. Despite the long history dated back to the 1960s, MWPs have regained intensive attention in the past few years with the advancement of Artificial Intelligence (AI). Solving MWPs successfully is considered as a milestone towards general AI. Many systems have claimed promising results in self-crafted and small-scale datasets. However, when applied on large and diverse datasets, none of the proposed methods in the literature achieves high precision, revealing that current MWP solvers still have much room for improvement. This motivated …


Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing Sep 2020

Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing

Theses and Dissertations

Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using …


Joint 1d And 2d Neural Networks For Automatic Modulation Recognition, Luis M. Rosario Morel Sep 2020

Joint 1d And 2d Neural Networks For Automatic Modulation Recognition, Luis M. Rosario Morel

Theses and Dissertations

The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O'Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these …


Spoken Language Recognition On Open-Source Datasets, Brady Arendale, Samira Zarandioon, Ryan Goodwin, Douglas Reynolds Aug 2020

Spoken Language Recognition On Open-Source Datasets, Brady Arendale, Samira Zarandioon, Ryan Goodwin, Douglas Reynolds

SMU Data Science Review

The field of speaker and language recognition is constantly being researched and developed, but much of this research is done on private or expensive datasets, making the field more inaccessible than many other areas of machine learning. In addition, many papers make performance claims without comparing their models to other recent research. With the recent development of public multilingual speech corpora such as Mozilla's Common Voice as well as several single-language corpora, we now have the resources to attempt to address both of these problems. We construct an eight-language dataset from Common Voice and a Google Bengali corpus as well …


Computational Methods For Predicting Protein-Protein Interactions And Binding Sites, Yiwei Li Aug 2020

Computational Methods For Predicting Protein-Protein Interactions And Binding Sites, Yiwei Li

Electronic Thesis and Dissertation Repository

Proteins are essential to organisms and participate in virtually every process within cells. Quite often, they keep the cells functioning by interacting with other proteins. This process is called protein-protein interaction (PPI). The bonding amino acid residues during the process of protein-protein interactions are called PPI binding sites. Identifying PPIs and PPI binding sites are fundamental problems in system biology.

Experimental methods for solving these two problems are slow and expensive. Therefore, great efforts are being made towards increasing the performance of computational methods.

We present DELPHI, a deep learning based program for PPI site prediction and SPRINT, an algorithmic …


Discrimination Of Leucine And Isoleucine In De Novo Peptide Sequencing Using Deep Neural Networks, Bingran Shen Aug 2020

Discrimination Of Leucine And Isoleucine In De Novo Peptide Sequencing Using Deep Neural Networks, Bingran Shen

Electronic Thesis and Dissertation Repository

De novo peptide sequencing from tandem MS data is a key technology in proteomics for understanding the structure of proteins, especially for first seen sequences. Although this technique has advanced rapidly in recent years and become more effective, one crucial problem remained unsolved. Due to the isomerism of leucine and isoleucine, they are practically indistinguishable in de novo sequencing using traditional tandem MS data. Some experimental attempts have been made to resolve this ambiguity such as EThCD fragmentation process. In this study, we took a data focused approach rather than only looking for characteristic satellite ions produced by the EThCD …