Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Entire DC Network

The Impact Of Nitrogen Contamination And River Modification On A Mississippi River Floodplain Lake, Indu Karthic, Richard B. Brugam Ph.D., William A. Retzlaff, Kevin Johnson Jul 2013

The Impact Of Nitrogen Contamination And River Modification On A Mississippi River Floodplain Lake, Indu Karthic, Richard B. Brugam Ph.D., William A. Retzlaff, Kevin Johnson

SIUE Faculty Research, Scholarship, and Creative Activity

Anthropogenic nitrogen contamination has increased in ecosystems around the world (frequently termed the “nitrogen cascade”). Coke production for steel manufacturing is often overlooked as a source of nitrogen to natural ecosystems. We examined sediment cores from a Horseshoe Lake, a floodplain lake located just East of St. Louis Missouri (USA) to test whether a coking plant effluent could be traced using stable isotopes of nitrogen and diatom microfossils. The distribution of δ15N values in surface sediment samples from the lake shows the highest values near the coking plant effluent. Analysis stable isotopes of nitrogen from sediment cores using …


Characterisation Of Porous Freeze Dried Conducting Carbon Nanotube-Chitosan Scaffolds, Simon Moulton, Gordon Wallace, Luke Sweetman Jul 2013

Characterisation Of Porous Freeze Dried Conducting Carbon Nanotube-Chitosan Scaffolds, Simon Moulton, Gordon Wallace, Luke Sweetman

Luke Sweetman

In this study, the fabrication and characterisation of highly porous yet conductive scaffolds was performed. The conductive component, namely single-walled carbon nanotubes (SWNTs), was incorporated into a chitosan bio-polymeric matrix utilising a dispersion-based freeze dry approach. The electroactive polymer poly(2-methoxy-5-sulfonic acid) (PMAS) was also successfully incorporated into scaffolds in an effort to improve the structural integrity of scaffolds in an aqueous, biologically relevant environment. Here, we report how the variation in dispersion and scaffold synthesis conditions, as well as the composition of constituent components, impact on scaffold properties.


Microscopic Role Of Carbon On Mgb2 Wire For Critical Current Density Comparable To Nbti, Jung Ho Kim, Sangjun Oh, Yoon-Uk Heo, Satoshi Hata, Hiroaki Kumakura, Akiyoshi Matsumoto, Masatoshi Mitsuhara, Seyong Choi, Yusuke Shimada, Minoru Maeda, Judith Macmanus-Driscoll, S X. Dou Jun 2013

Microscopic Role Of Carbon On Mgb2 Wire For Critical Current Density Comparable To Nbti, Jung Ho Kim, Sangjun Oh, Yoon-Uk Heo, Satoshi Hata, Hiroaki Kumakura, Akiyoshi Matsumoto, Masatoshi Mitsuhara, Seyong Choi, Yusuke Shimada, Minoru Maeda, Judith Macmanus-Driscoll, S X. Dou

Shi Xue Dou

Increasing dissipation-free supercurrent has been the primary issue for practical application of superconducting wires. For magnesium diboride, MgB2, carbon is known to be the most effective dopant to enhance high-field properties. However, the critical role of carbon remains elusive, and also low-field critical current density has not been improved. Here, we have undertaken malic acid doping of MgB2 and find that the microscopic origin for the enhancement of high-field properties is due to boron vacancies and associated stacking faults, as observed by high-resolution transmission electron microscopy and electron energy loss spectroscopy. The carbon from the malic acid almost uniformly encapsulates …


Nano-Structured Sno2-Carbon Composites Obtained By In Situ Spray Pyrolysis Method As Anodes In Lithium Batteries, Ling Yuan, Konstantin Konstantinov, Guoxiu Wang, Hua-Kun Liu, S X. Dou Jun 2013

Nano-Structured Sno2-Carbon Composites Obtained By In Situ Spray Pyrolysis Method As Anodes In Lithium Batteries, Ling Yuan, Konstantin Konstantinov, Guoxiu Wang, Hua-Kun Liu, S X. Dou

Shi Xue Dou

In this paper, we report on a series of SnO2-carbon nano-composites synthesized by in situ spray pyrolysis of a solution of SnCl2·2H2O and sucrose at 700 °C. The process results in super fine nanocrystalline SnO2, which is homogeneously distributed inside the amorphous carbon matrix. The SnO2 was revealed as a structure of broken hollow spheres with porosity on both the inside and outside particle surfaces. This structure promises a highly developed specific surface area. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images revealed the SnO2 crystal size is about 5–15 nm. These composites show a reversible lithium storage …


Strong Competition Between The Delta L And Delta T-C Flux Pinning Mechanisms In Mgb2 Doped With Carbon Containing Compounds, Shaban R. Ghorbani, Xiaolin Wang, Md S. Hossain, Qiwen Yao, S X. Dou, Sung-Ik Lee, K C. Chung, Y K. Kim Jun 2013

Strong Competition Between The Delta L And Delta T-C Flux Pinning Mechanisms In Mgb2 Doped With Carbon Containing Compounds, Shaban R. Ghorbani, Xiaolin Wang, Md S. Hossain, Qiwen Yao, S X. Dou, Sung-Ik Lee, K C. Chung, Y K. Kim

Shi Xue Dou

The transport and magnetic properties of 10 wt % malic acid and 5 wt % nanocarbon doped MgB2 have been studied by measuring the resistivity (p), critical current density (jc), connectivity factor (AF), irreversibility field (Hirr), and upper critical field (Hc2). The pinning mechanisms are studied in terms of the collective pinning model. It was found that both mean free path (δl) and critical temperature (δTc) pinning mechanisms coexist in both doped MgB2. For both the malic acid and nanocarbon doped samples, the temperature dependence of the crossover field, which separates the single vortex and the small bundle pinning regime, …


The Effect Of Canopy Organization On The Photosynthesis Of Sphagnum, Brian Solinsky Jun 2013

The Effect Of Canopy Organization On The Photosynthesis Of Sphagnum, Brian Solinsky

Honors Theses

With climate change becoming a greater problem the ability of plants to photosynthesize and sequester carbon becomes more important for us to understand. Sphagnum moss stores more than a third of the world’s soil carbon. Much is understood about the physiology of Sphagnum, but what is generally not understood is the effect of variation in canopy organization in Sphagnum: why are they both rough and smooth? This study examined whether different canopy structures influenced how the canopy uses different angles of light for photosynthesis. The first step was modeling photosynthesis in two simulated structures (rough and smooth) as the angle …


Nanostructured Carbon Electrodes, Gordon G. Wallace, Jun Chen, Dan Li, Simon E. Moulton, Joselito M. Razal Mar 2013

Nanostructured Carbon Electrodes, Gordon G. Wallace, Jun Chen, Dan Li, Simon E. Moulton, Joselito M. Razal

Gordon Wallace

In its conducting form, carbon has proven to be a versatile, robust and high performing electrode material in areas such as energy conversion, energy storage and even medical bionics. In our laboratories we have been interested in the fabrication and utilization of nanostructured electrodes based on more recently discovered forms of carbon. These include carbon nanotubes and graphene.


Carbon-Nanotube Biofiber Microelectrodes, Carol M. Lynam, Gordon G. Wallace, Willo Grosse Mar 2013

Carbon-Nanotube Biofiber Microelectrodes, Carol M. Lynam, Gordon G. Wallace, Willo Grosse

Gordon Wallace

All-biocompatible carbon-nanotube fibers were formed using wet spinning. In this process the spinning solutions used are carbon nanotubes dispersed using biomolecules such as hyaluronic acid and chitosan. We compare the effect of a coagulation bath containing either a polymer binder, e.g., polyethyleneimine, or simply a precipitating solvent system, e.g., acetone. The electrical, mechanical, and morphological properties of the resulting fibers were studied. Biocompatible electrode structures were generated suitable for a variety of biomedical applications, e.g.,in biosensors or in systems where the application of an electrical field is advantageous e.g., stimulation of electrically excitable cells such as nerve and muscle cells.


Photocatalytic Oxidation Of Methanol Using Titanium Dioxide/Single-Walled Carbon Nanotube Composite, Jun Chen, Carol M. Lynam, Chonlada Dechakiatkrai, Gordon G. Wallace, Sukon Phanichphant Mar 2013

Photocatalytic Oxidation Of Methanol Using Titanium Dioxide/Single-Walled Carbon Nanotube Composite, Jun Chen, Carol M. Lynam, Chonlada Dechakiatkrai, Gordon G. Wallace, Sukon Phanichphant

Gordon Wallace

Titanium dioxide/single-walled carbon nanotube TiO2/SWNT composites were prepared for photocatalytic applications. Thecomposites were characterized using UV-visible and Raman spectroscopy, zeta-potential measurements, cyclic voltammetrycoupled with a photoreactor, scanning electron microscopy, and transmission electron microscopy coupled with energy dispersiveX-ray spectroscopy. The photocatalytic activity of TiO2 and the TiO2/SWNT composite was investigated using the photo-oxidationof methanol in sulfuric acid as supporting electrolyte. The results indicate that the TiO2/SWNT composite enhances the photocatalyticactivity compared to TiO2 alone. Electrochemical studies of the TiO2/SWNT composite were also carried out in varioussupporting electrolytes and the presence of SWNTs was shown to increase the current achieved in voltammetric …


Parametric Study Of Reaxff Simulation Parameters For Molecular Dynamics Modeling Of Reactive Carbon Gases, Benjamin David Jensen Jan 2013

Parametric Study Of Reaxff Simulation Parameters For Molecular Dynamics Modeling Of Reactive Carbon Gases, Benjamin David Jensen

Dissertations, Master's Theses and Master's Reports - Open

Abstract

The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with …


Interactive Controls Of Water Table Position And Plant Functional Types On Peat Porewater Character In Northern Bog Ecosystems: Implications For Carbon Cycling Dynamics, Aleta L. Daniels Jan 2013

Interactive Controls Of Water Table Position And Plant Functional Types On Peat Porewater Character In Northern Bog Ecosystems: Implications For Carbon Cycling Dynamics, Aleta L. Daniels

Dissertations, Master's Theses and Master's Reports - Open

Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated …


Microwave Characterization Of Carbon Nanotube Yarns For Uwb Medical Wireless Body Area Networks, Syed Muzahir Abbas, Oya Sevimli, Michael C. Heimlich, Karu P. Esselle, B Kimiaghalam, Javad Foroughi, Farzad Safaei Jan 2013

Microwave Characterization Of Carbon Nanotube Yarns For Uwb Medical Wireless Body Area Networks, Syed Muzahir Abbas, Oya Sevimli, Michael C. Heimlich, Karu P. Esselle, B Kimiaghalam, Javad Foroughi, Farzad Safaei

Australian Institute for Innovative Materials - Papers

Carbon nanotube (CNT) yarns are novel CNT-based materials that extend the advantages of CNT from the nanoscale to macroscale applications. In this study, we have modeled CNT yarns as potential data transmission lines. Test structures have been designed to measure electrical properties of CNT yarns, which are attached to these test structures using gold paste. DC testing and microwave S-parameter measurements have been conducted for characterization. The observed frequency independent resistive behavior of the CNT yarn is a very promising indicator that this material, with its added values of mechanical resilience and thermal conductivity, could be invaluable for a range …


Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites With Modified Morphology And Thermal Properties, Nasir Mahmood, Mohammad Islam, Asad Hameed, Shaukat Saeed Jan 2013

Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites With Modified Morphology And Thermal Properties, Nasir Mahmood, Mohammad Islam, Asad Hameed, Shaukat Saeed

Australian Institute for Innovative Materials - Papers

Pure polyamide 6 (PA6) and polyamide 6/carbon nanotube (PA6/CNT) composite samples with 0.5 weight percent loading of pristine or functionalized CNTs were made using a solution mixing technique. Modification of nanotube surface as a result of chemical functionalization was confirmed through the presence of lattice defects as examined under high-resolution transmission electron microscope and absorption bands characteristic of carboxylic, sulfonic and amine chemical groups. Microstructural examination of the cryogenically fractured surfaces revealed qualitative information regarding CNT dispersion within PA6 matrix and interfacial strength. X-ray diffraction studies indicated formation of thermodynamically more stable α-phase crystals. Thermogravimetric analysis revealed that CNT incorporation …


'Laser Chemistry' Synthesis, Physicochemical Properties, And Chemical Processing Of Nanostructured Carbon Foams, Andres Seral-Ascaso, Rosa Garriga, Maria Luisa Sanjuan, Joselito M. Razal, Ruth Lahoz, Mariano Laguna, German F. De La Fuente, Edgar Munoz Jan 2013

'Laser Chemistry' Synthesis, Physicochemical Properties, And Chemical Processing Of Nanostructured Carbon Foams, Andres Seral-Ascaso, Rosa Garriga, Maria Luisa Sanjuan, Joselito M. Razal, Ruth Lahoz, Mariano Laguna, German F. De La Fuente, Edgar Munoz

Australian Institute for Innovative Materials - Papers

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This 'laser chemistry' approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density …


Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton Jan 2013

Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton

Australian Institute for Innovative Materials - Papers

Aqueous dispersions of reduced graphene oxide (rGO) and multi walled carbon nanotubes (MWCNT) were fabricated through a modified chemical reduction method. The significant advantage of the method developed here is the omission of any stabilising compound or organic solvent to obtain stable rGO-MWCNT dispersions. Significantly biological entities, in this case the enzyme glucose oxidase (GOx), can be successfully incorporated into the dispersion. These dispersions were characterised using XPS, SEM, zeta potential and particle size measurements which showed that the dispersion stability is not sacrificed with the addition of GOx, and significantly, the electrical properties of the rGO and MWCNTs are …


Platinum Electrodeposition On Unsupported Single Wall Carbon Nanotubes And Its Application As Methane Sensing Material, Enid Contes-De Jesus, Diana Santiago, Gilberto Casillas, Alvaro Mayoral, Cesar Magen, Miguel Jose-Yacaman, Jing Li, Carlos R. Cabrera Jan 2013

Platinum Electrodeposition On Unsupported Single Wall Carbon Nanotubes And Its Application As Methane Sensing Material, Enid Contes-De Jesus, Diana Santiago, Gilberto Casillas, Alvaro Mayoral, Cesar Magen, Miguel Jose-Yacaman, Jing Li, Carlos R. Cabrera

Australian Institute for Innovative Materials - Papers

This paper reports the decoration of single wall carbon nanotubes (SWCNTs) with platinum (Pt) nanoparticles using an electrochemical technique, rotating disk slurry electrode (RoDSE). Pt/SWCNTs were electrochemically characterized by cyclic voltammetry technique (CV) and physically characterized through the use of transmission electron microscopy (TEM), energy dispersive spectroscopy - X-ray florescence (EDS-XRF) and X-ray diffraction (XRD). After characterization it was found that electrodeposited nanoparticles had an average particle size of 4.1 ± 0.8 nm. Pt/SWCNTs were used as sensing material for methane (CH4) detection and showed improved sensing properties in a range of concentration from 50 ppm to 200 ppm parts …


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Jan 2013

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu Jan 2013

Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

This work aims to develop biocompatible non-toxic materials for implantable bio-electronic cells. Polypyrrole (PPy)–carbon nanotube (CNT) composites with varied ratios of PPy to CNTs were chemically synthesized and used as cathodes with the support of cellulose paper. Zinc foil was used as the anode material due to its non-toxicity and moderate dissolution rate in aqueous solutions. Simulated body fluids (SBFs) with various protein concentrations were applied as electrolytes in this battery system. The PPy–CNT|Zn cell is capable of being discharged up to 24.5 hours at a current density of 60 μA cm−2 in a protein free SBF. The batteries …


Simply Mixed Commercial Red Phosphorus And Carbon Nanotube Composite With Exceptionally Reversible Sodium-Ion Storage, Wei-Jie Li, Shulei Chou, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou Jan 2013

Simply Mixed Commercial Red Phosphorus And Carbon Nanotube Composite With Exceptionally Reversible Sodium-Ion Storage, Wei-Jie Li, Shulei Chou, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Recently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable power stations and smart grid, owing to their low cost, their abundant natural resources, and the similar chemistry of sodium and lithium. Elemental phosphorus (P) is the most promising anode materials for SIBs with the highest theoretical capacity of 2596 mA h g-1, but the commercially available red phosphorus cannot react with Na reversibly. Here, we report that simply hand-grinding commercial microsized red phosphorus and carbon nanotubes (CNTs) can deliver a reversible capacity of 1675 …


Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen Jan 2013

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen

Australian Institute for Innovative Materials - Papers

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.


Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2013

Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

From energy and environmental consideration, an industrial waste product, coal tar pitch (CTP), is used as the carbon source for Si/AC composite. We exploited a facile sintering method to largely scale up Si/amorphous carbon nanocomposite. The composites with 20 wt.% silicon with PVdF binder exhibited stable lithium storage ability for prolonged cycling. The composite anode delivered a capacity of 400.3 mAh g−1 with a high capacity retention of 71.3% after 1000 cycles. Various methods are used to investigate the reason for the outstanding cyclability. The results indicate that the silicon nanoparticles are wrapped by amorphous SiOx and AC in Si/AC …


Co2 Capture And Gas Separation On Boron Carbon Nanotubes, Qiao Sun, Meng Wang, Zhen Li, Yingying Ma, Aijun Du Jan 2013

Co2 Capture And Gas Separation On Boron Carbon Nanotubes, Qiao Sun, Meng Wang, Zhen Li, Yingying Ma, Aijun Du

Australian Institute for Innovative Materials - Papers

Concern about the increasing atmospheric CO2 concentration and its impact on the environment has led to increasing attention directed toward finding advanced materials and technologies suited for efficient CO2 capture, storage and purification of clean-burning natural gas. In this letter, we have performed comprehensive theoretical investigation of CO2, N2, CH4 and H2 adsorption on B2CNTs. Our study shows that CO2 molecules can form strong interactions with B2CNTs with different charge states. However, N2, CH 4 and H2 can only form very weak interactions with B 2CNTs. Therefore, the study demonstrates B2CNTs could sever as promising materials for CO2 capture and …


Highly Uniform Tio2/Sno2/Carbon Hybrid Nanofibers With Greatly Enhanced Lithium Storage Performance, Zunxian Yang, Qing Meng, Zaiping Guo, Xuebin Yu, Tailiang Guo, Rong Zeng Jan 2013

Highly Uniform Tio2/Sno2/Carbon Hybrid Nanofibers With Greatly Enhanced Lithium Storage Performance, Zunxian Yang, Qing Meng, Zaiping Guo, Xuebin Yu, Tailiang Guo, Rong Zeng

Australian Institute for Innovative Materials - Papers

Highly uniform, relatively large area TiO2/SnO 2/carbon hybrid nanofibers were synthesized by a simple method based on thermal pyrolysis and oxidation of an as-spun titanium-tin/polyacrylonitrile nanoweb composite in an argon atmosphere. This novel composite features the uniform dispersion and encapsulation of highly uniform nanoscale TiO 2/SnO2 crystals in a porous carbon matrix. The high porosity of the nanofiber composite material, together with the conductive carbon matrix, enhanced the electrochemical performance of the TiO 2/SnO2/carbon nanofiber electrode. The TiO 2/SnO2/carbon nanofiber electrode displays a reversible capacity of 442.8 mA h g-1 for up to 100 cycles, and exhibits excellent rate capability. …


Stable Isotopes And Trace Elements In Tooth Enamel Bioapatite: Effects Of Diagenesis And Pretreatment On Primary Paleoecological Information, Jessica Norman Wilson Jan 2013

Stable Isotopes And Trace Elements In Tooth Enamel Bioapatite: Effects Of Diagenesis And Pretreatment On Primary Paleoecological Information, Jessica Norman Wilson

USF Tampa Graduate Theses and Dissertations

The geochemical analysis of bioapatite in vertebrate skeletal tissues is an important tool used to obtain ecological information from fossil animals. An important consideration when conducting stable isotope and trace element analyses is obtaining biogenic information that has been unaffected by diagenetic processes.

A two-step pretreatment procedure is commonly used remove diagenetically altered material by removing organic material, via an oxidation reaction with H2O2 or NaOCl, and secondary carbonate, via dissolution in dilute acetic acid, from bioapatite. While much work has been done to determine the efficacy of the pretreatment process, little research has been conducted to determine the potential …