Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Mathematics, Physics, and Computer Science Faculty Articles and Research

Series

Deep learning

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Predicting Suicidal And Self-Injurious Events In A Correctional Setting Using Ai Algorithms On Unstructured Medical Notes And Structured Data, Hongxia Lu, Alex Barrett, Albert Pierce, Jianwei Zheng, Yun Wang, Chun Chiang, Cyril Rakovski Jan 2023

Predicting Suicidal And Self-Injurious Events In A Correctional Setting Using Ai Algorithms On Unstructured Medical Notes And Structured Data, Hongxia Lu, Alex Barrett, Albert Pierce, Jianwei Zheng, Yun Wang, Chun Chiang, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

Suicidal and self-injurious incidents in correctional settings deplete the institutional and healthcare resources, create disorder and stress for staff and other inmates. Traditional statistical analyses provide some guidance, but they can only be applied to structured data that are often difficult to collect and their recommendations are often expensive to act upon. This study aims to extract information from medical and mental health progress notes using AI algorithms to make actionable predictions of suicidal and self-injurious events to improve the efficiency of triage for health care services and prevent suicidal and injurious events from happening at California's Orange County Jails. …


A Comparative Study On Deep Learning Models For Text Classification Of Unstructured Medical Notes With Various Levels Of Class Imbalance, Hongxia Lu, Louis Ehwerhemuepha, Cyril Rakovski Jul 2022

A Comparative Study On Deep Learning Models For Text Classification Of Unstructured Medical Notes With Various Levels Of Class Imbalance, Hongxia Lu, Louis Ehwerhemuepha, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background

Discharge medical notes written by physicians contain important information about the health condition of patients. Many deep learning algorithms have been successfully applied to extract important information from unstructured medical notes data that can entail subsequent actionable results in the medical domain. This study aims to explore the model performance of various deep learning algorithms in text classification tasks on medical notes with respect to different disease class imbalance scenarios.

Methods

In this study, we employed seven artificial intelligence models, a CNN (Convolutional Neural Network), a Transformer encoder, a pretrained BERT (Bidirectional Encoder Representations from Transformers), and four typical …


Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski Jun 2022

Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

ECG (Electrocardiogram) data analysis is one of the most widely used and important tools in cardiology diagnostics. In recent years the development of advanced deep learning techniques and GPU hardware have made it possible to train neural network models that attain exceptionally high levels of accuracy in complex tasks such as heart disease diagnoses and treatments. We investigate the use of ECGs as biometrics in human identification systems by implementing state-of-the-art deep learning models. We train convolutional neural network models on approximately 81k patients from the US, Germany and China. Currently, this is the largest research project on ECG identification. …


Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao Jul 2020

Allosteric Regulation At The Crossroads Of New Technologies: Multiscale Modeling, Networks, And Machine Learning, Gennady M. Verkhivker, Steve Agajanian, Guang Hu, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the “second secret of life.” The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of …


Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker Jun 2019

Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to …