Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

University of Central Florida

Theses/Dissertations

Nanoparticles

Articles 1 - 13 of 13

Full-Text Articles in Entire DC Network

Synthesis Of Polyacrylic Acid - Dopamine Nanoparticles As Radical Scavengers For Antioxidant Applications, Russell D. Cox Jan 2020

Synthesis Of Polyacrylic Acid - Dopamine Nanoparticles As Radical Scavengers For Antioxidant Applications, Russell D. Cox

Honors Undergraduate Theses

The antioxidant activity of novel drugs has been of increasing interest in recent years. Free radicals are linked as a cause to many diseases such as atherosclerosis and cancer,1 so development of drugs that can scavenge and break down free radicals is needed. One such potential solution is using dopamine, which is water-soluble and an antioxidant. However, the tendency of antioxidant drugs reacting undesirably with proteins and other biochemical compounds is a big issue for the drugs' antioxidant potential. One solution is by encapsulating the antioxidant compound in biocompatible polymer nanoparticles. In this project, dopamine is bound to the polymer …


A Theoretical And Experimental Investigation Of The Physical And Chemical Properties Of Solid Nanoscale Interfaces, Jeronimo Matos Jan 2015

A Theoretical And Experimental Investigation Of The Physical And Chemical Properties Of Solid Nanoscale Interfaces, Jeronimo Matos

Electronic Theses and Dissertations

With the emerging interest in nanoscale materials, the fascinating field of surface science is rapidly growing and presenting challenges to the design of both experimental and theoretical studies. The primary aim of this dissertation is to shed some light on the physical and chemical properties of selected nanoscale materials at the interface. Furthermore, we will discuss the effective application of cutting edge theoretical and experimental techniques that are invaluable tools for understanding the systems at hand. To this effect, we use density functional theory (DFT) with the inclusion of van der Waals (vdW) interactions to study the effect of long-range …


Quantitative Scanning Transmission Electron Microscopy Of Thick Samples And Of Gold And Silver Nanoparticles On Polymeric Surfaces, Aniruddha Dutta Jan 2014

Quantitative Scanning Transmission Electron Microscopy Of Thick Samples And Of Gold And Silver Nanoparticles On Polymeric Surfaces, Aniruddha Dutta

Electronic Theses and Dissertations

Transmission Electron Microscopy (TEM) is a reliable tool for chemical and structural studies of nanostructured systems. The shape, size and volumes of nanoparticles on surfaces play an important role in surface chemistry. As nanostructured surfaces become increasingly important for catalysis, protective coatings, optical properties, detection of specific molecules, and many other applications, different techniques of TEM can be used to characterize the properties of nanoparticles on surfaces to provide a path for predictability and control of these systems. This dissertation aims to provide fundamental understanding of the surface chemistry of Electroless Metallization onto Polymeric Surfaces (EMPS) through characterization with TEM. …


Light-Matter Interactions Of Plasmonic Nanostructures, Jennifer Reed Jan 2013

Light-Matter Interactions Of Plasmonic Nanostructures, Jennifer Reed

Electronic Theses and Dissertations

Light interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective oscillation of the conduction electrons in the metal. Since the conduction electrons can be thought of as harmonic oscillators, they are quantized in a similar fashion. Just …


Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects, Farzad Behafarid Jan 2012

Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects, Farzad Behafarid

Electronic Theses and Dissertations

Recent advances in nanoscience and technology have provided the scientific community with new exciting opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. A variety of challenges related to nanoparticle (NP) synthesis and materials characterization have been tackled , allowing us to make more homogenous, well defined, size- and shape-selected NPs, and to probe deeper and more comprehensively into their distinct properties. In this dissertation, a variety of phenomena relevant to nanosized materials are investigated, including the thermal stability of NPs and coarsening phenomena in different environments, the …


The Behavior Of Cerium Oxide Nanoparticles In Polymer Electrolyte Membranes In Ex-Situ And In-Situ Fuel Cell Durability Tests, Benjamin Pearman Jan 2012

The Behavior Of Cerium Oxide Nanoparticles In Polymer Electrolyte Membranes In Ex-Situ And In-Situ Fuel Cell Durability Tests, Benjamin Pearman

Electronic Theses and Dissertations

Fuel cells are known for their high efficiency and have the potential to become a major technology for producing clean energy, especially when the fuel, e.g. hydrogen, is produced from renewable energy sources such as wind or solar. Currently, the two main obstacles to wide-spread commercialization are their high cost and the short operational lifetime of certain components. Polymer electrolyte membrane (PEM) fuel cells have been a focus of attention in recent years, due to their use of hydrogen as a fuel, their comparatively low operating temperature and flexibility for use in both stationary and portable (automotive) applications. Perfluorosulfonic acid …


Characterization Of Composite Broad Band Absorbing Conjugated Polymer Nanoparticles Using Steady-State, Time-Resolve And Single Particle Spectroscopy, Maxwell Scotland Bonner Jan 2011

Characterization Of Composite Broad Band Absorbing Conjugated Polymer Nanoparticles Using Steady-State, Time-Resolve And Single Particle Spectroscopy, Maxwell Scotland Bonner

Electronic Theses and Dissertations

As the global economy searches for reliable, inexpensive and environmentally friendly renewable energy resources, energy conservation by means of photovoltaics has seen near exponential growth in the last decade. Compared to state-of-the-art inorganic solar cells, organic photovoltaics (OPVs) composed of conjugated polymers are particularly interesting because of their processability, flexibility and the potential for large area devices at a reduced fabrication cost. It has been extensively documented that the interchain and intrachain interactions of conjugated polymers complicate the fundamental understanding of the optical and electronic properties in the solid-state (i.e. thin film active layer). These interactions are highly dependent on …


Investigations On Morphology, Spectroscopy And Near-Infrared Photoresponse Sensitization Of Conjugated Polymers In Organic Photovoltaics, Zhongjian Hu Jan 2011

Investigations On Morphology, Spectroscopy And Near-Infrared Photoresponse Sensitization Of Conjugated Polymers In Organic Photovoltaics, Zhongjian Hu

Electronic Theses and Dissertations

Conjugated polymer architecture and morphology are two of the key factors that determine corresponding opto-electronic device performance. It is well-known that conjugated polymers display a variety of conformations and exhibit aggregation in their materials and even for individual polymer chains. The intrinsic structural heterogeneity of conjugated polymers strongly complicates the active layer morphology and phase separation, which are crucial for photoinduced charge generation and transport in polymer based bulk heterojunction-organic photovoltaics device (BHJ-OPVs). Aiming to probe the molecular level correlations between conjugated polymer architecture, morphology and optoelectronic properties, single molecule spectroscopy (SMS) and single particle spectroscopy (SPS) were employed. The …


Metal Blacks As Scattering Centers To Increase The Efficiency Of Thin Film Solar Cells, Deep R. Panjwani Jan 2011

Metal Blacks As Scattering Centers To Increase The Efficiency Of Thin Film Solar Cells, Deep R. Panjwani

Electronic Theses and Dissertations

Metal nano particles are investigated as scattering centers on front surface of thin-film solar cells to improve efficiency. The principle is that scattering, which is enhanced near the plasmon resonance frequency of the particle and depends on particle size, increases the effective optical path length of incident light, leading to more light absorption in active layer of thin film solar cell. The particular types of particles investigated here are known as "metal-black", well known as an IR absorber for bolometric infrared detectors. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in a nitrogen ambient at pressures …


Plasmon Enhanced Near-Field Interactions In Surface Coupled Nanoparticle Arrays For Integrated Nanophotonic Devices, Amitabh Ghoshal Jan 2010

Plasmon Enhanced Near-Field Interactions In Surface Coupled Nanoparticle Arrays For Integrated Nanophotonic Devices, Amitabh Ghoshal

Electronic Theses and Dissertations

The current thrust towards developing silicon compatible integrated nanophotonic devices is driven by need to overcome critical challenges in electronic circuit technology related to information bandwidth and thermal management. Surface plasmon nanophotonics represents a hybrid technology at the interface of optics and electronics that could address several of the existing challenges. Surface plasmons are electronic charge density waves that can occur at a metal-dielectric interface at optical and infrared frequencies. Numerous plasmon based integrated optical devices such as waveguides, splitters, resonators and multimode interference devices have been developed, however no standard integrated device for coupling light into nanoscale optical circuits …


Supported Mono And Bimetallic Platinum And Iron Nanoparticles Electronic, Structural, Catalytic, And Vibrational Properties, Jason Robert Croy Jan 2010

Supported Mono And Bimetallic Platinum And Iron Nanoparticles Electronic, Structural, Catalytic, And Vibrational Properties, Jason Robert Croy

Electronic Theses and Dissertations

Catalysis technologies are among the most important in the modern world. They are instrumental in the realization of a variety of products and processes including chemicals, polymers, foods, pharmaceuticals, fuels, and fuel cells. As such, interest in the catalysts that drive these processes is ongoing, and basic research has led to significant advances in the field, including the production of more environmentally friendly catalysts that can be tuned at the molecular/atomic level. However, there are many factors which influence the performance of a catalyst and many unanswered questions still remain. The first part of this work is concerned with the …


Imaging And Spectroscopy Of Conducting Polymer-Fullerene Composite Materials, Daeri Tenery Jan 2009

Imaging And Spectroscopy Of Conducting Polymer-Fullerene Composite Materials, Daeri Tenery

Electronic Theses and Dissertations

Since the development and optical study of conjugated (conducting) polymers it has become apparent that chain conformation and aggregation at the molecular scale result in complex heterogeneous nanostructured bulk materials for which a detailed insight into morphological, spectroscopic as well as optoelectronic properties and mechanisms is overwhelmingly difficult to obtain. Nanoparticles composed of the conjugated polymer poly (MEH-PPV) and nanocomposite nanoparticles consisting of MEH-PPV doped with 1-(3-methoxycarbonylpropyl)-1-phenyl-C61 (PCBM) were prepared as model systems to study these materials at the length scale of one to a few domains. The MEH-PPV and PCBM doped nanoparticles were analyzed by single imaging/particle spectroscopy (SPS) …


In-Situ Gas Phase Catalytic Properties Of Metal Nanoparticles, Luis Ono Jan 2009

In-Situ Gas Phase Catalytic Properties Of Metal Nanoparticles, Luis Ono

Electronic Theses and Dissertations

Recent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research, fundamental understanding on the factors that dominate the activity, selectivity, and stability (life-time) of nanoscale catalysts are still not well understood. This dissertation aims to explore …