Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Entire DC Network

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego May 2023

Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego

Electrical & Computer Engineering Theses & Dissertations

World Health Organization (WHO) data show that around 684,000 people die from falls yearly, making it the second-highest mortality rate after traffic accidents [1]. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. In light of the recent widespread adoption of wearable sensors, it has become increasingly critical that fall detection models are developed that can effectively process large and sequential sensor signal data. Several researchers have recently developed fall detection algorithms based on wearable sensor data. However, real-time fall detection remains challenging because of the wide …


Apt Adversarial Defence Mechanism For Industrial Iot Enabled Cyber-Physical System, Safdar Hussain Javed, Maaz Bin Ahmad, Muhammad Asif, Waseem Akram, Khalid Mahmood, Ashok Kumar Das, Sachin Shetty Jan 2023

Apt Adversarial Defence Mechanism For Industrial Iot Enabled Cyber-Physical System, Safdar Hussain Javed, Maaz Bin Ahmad, Muhammad Asif, Waseem Akram, Khalid Mahmood, Ashok Kumar Das, Sachin Shetty

VMASC Publications

The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods …


Claimdistiller: Scientific Claim Extraction With Supervised Contrastive Learning, Xin Wei, Md Reshad Ul Hoque, Jian Wu, Jiang Li Jan 2023

Claimdistiller: Scientific Claim Extraction With Supervised Contrastive Learning, Xin Wei, Md Reshad Ul Hoque, Jian Wu, Jiang Li

Computer Science Faculty Publications

The growth of scientific papers in the past decades calls for effective claim extraction tools to automatically and accurately locate key claims from unstructured text. Such claims will benefit content-wise aggregated exploration of scientific knowledge beyond the metadata level. One challenge of building such a model is how to effectively use limited labeled training data. In this paper, we compared transfer learning and contrastive learning frameworks in terms of performance, time and training data size. We found contrastive learning has better performance at a lower cost of data across all models. Our contrastive-learning-based model ClaimDistiller has the highest performance, boosting …


Unttangling Irregular Actin Cytoskeleton Architectures In Tomograms Of The Cell With Struwwel Tracer, Salim Sazzed, Peter Scheible, Jing He, Willy Wriggers Jan 2023

Unttangling Irregular Actin Cytoskeleton Architectures In Tomograms Of The Cell With Struwwel Tracer, Salim Sazzed, Peter Scheible, Jing He, Willy Wriggers

Computer Science Faculty Publications

In this work, we established, validated, and optimized a novel computational framework for tracing arbitrarily oriented actin filaments in cryo-electron tomography maps. Our approach was designed for highly complex intracellular architectures in which a long-range cytoskeleton network extends throughout the cell bodies and protrusions. The irregular organization of the actin network, as well as cryo-electron-tomography-specific noise, missing wedge artifacts, and map dimensions call for a specialized implementation that is both robust and efficient. Our proposed solution, Struwwel Tracer, accumulates densities along paths of a specific length in various directions, starting from locally determined seed points. The highest-density paths originating …


Identifying The Serious Clinical Outcomes Of Adverse Reactions To Drugs By A Multi-Task Deep Learning Framework, Haochen Zhao, Peng Ni, Qichang Zhao, Xiao Liang, Di Ai, Shannon Erhardt, Jun Wang, Yaohang Li, Jiianxin Wang Jan 2023

Identifying The Serious Clinical Outcomes Of Adverse Reactions To Drugs By A Multi-Task Deep Learning Framework, Haochen Zhao, Peng Ni, Qichang Zhao, Xiao Liang, Di Ai, Shannon Erhardt, Jun Wang, Yaohang Li, Jiianxin Wang

Computer Science Faculty Publications

Adverse Drug Reactions (ADRs) have a direct impact on human health. As continuous pharmacovigilance and drug monitoring prove to be costly and time-consuming, computational methods have emerged as promising alternatives. However, most existing computational methods primarily focus on predicting whether or not the drug is associated with an adverse reaction and do not consider the core issue of drug benefit-risk assessment-whether the treatment outcome is serious when adverse drug reactions occur. To this end, we categorize serious clinical outcomes caused by adverse reactions to drugs into seven distinct classes and present a deep learning framework, so-called GCAP, for predicting the …


Nudyclr: Nuclear Dynamic Co-Learned Representations, Víctor Samuel Pérez-Díaz Jan 2023

Nudyclr: Nuclear Dynamic Co-Learned Representations, Víctor Samuel Pérez-Díaz

2023 REYES Proceedings

NuCLR (Nuclear Co-Learned Representations) is a cutting-edge multi-task deep learning framework designed to predict essential nuclear observables, including binding energies, decay energies, and nuclear charge radii. As part of the REYES Mentorship Program, we investigated the application of dynamic loss weighting to further refine NuCLR’s predictive performance. Our findings indicate that while weighting strategies can enhance accuracy in specific tasks, such as binding energy prediction, they may underperform in others. Equal Weighting (EW), the original method employed by NuCLR, demonstrated consistent performance across multiple tasks, affirming its robustness. This report succinctly presents the developments and results of the mentorship program …


An Approach To Developing Benchmark Datasets For Protein Secondary Structure Segmentation From Cryo-Em Density Maps, Thu Nguyen, Yongcheng Mu, Jiangwen Sun, Jing He Jan 2023

An Approach To Developing Benchmark Datasets For Protein Secondary Structure Segmentation From Cryo-Em Density Maps, Thu Nguyen, Yongcheng Mu, Jiangwen Sun, Jing He

Computer Science Faculty Publications

More and more deep learning approaches have been proposed to segment secondary structures from cryo-electron density maps at medium resolution range (5--10Å). Although the deep learning approaches show great potential, only a few small experimental data sets have been used to test the approaches. There is limited understanding about potential factors, in data, that affect the performance of segmentation. We propose an approach to generate data sets with desired specifications in three potential factors - the protein sequence identity, structural contents, and data quality. The approach was implemented and has generated a test set and various training sets to study …


A Hybrid Deep Learning Approach For Crude Oil Price Prediction, Hind Aldabagh, Xianrong Zheng, Ravi Mukkamala Jan 2023

A Hybrid Deep Learning Approach For Crude Oil Price Prediction, Hind Aldabagh, Xianrong Zheng, Ravi Mukkamala

Computer Science Faculty Publications

Crude oil is one of the world’s most important commodities. Its price can affect the global economy, as well as the economies of importing and exporting countries. As a result, forecasting the price of crude oil is essential for investors. However, crude oil price tends to fluctuate considerably during significant world events, such as the COVID-19 pandemic and geopolitical conflicts. In this paper, we propose a deep learning model for forecasting the crude oil price of one-step and multi-step ahead. The model extracts important features that impact crude oil prices and uses them to predict future prices. The prediction model …


Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Class Activation Mapping And Uncertainty Estimation In Multi-Organ Segmentation, Md. Shibly Sadique, Walia Farzana, Ahmed Temtam, Khan Iftekharuddin, Khan Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

Deep learning (DL)-based medical imaging and image segmentation algorithms achieve impressive performance on many benchmarks. Yet the efficacy of deep learning methods for future clinical applications may become questionable due to the lack of ability to reason with uncertainty and interpret probable areas of failures in prediction decisions. Therefore, it is desired that such a deep learning model for segmentation classification is able to reliably predict its confidence measure and map back to the original imaging cases to interpret the prediction decisions. In this work, uncertainty estimation for multiorgan segmentation task is evaluated to interpret the predictive modeling in DL …


Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner Jan 2023

Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner

Electrical & Computer Engineering Faculty Publications

This paper presents a novel deep-learning (DL)-based approach for classifying digitally modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal processing (CSP) and were then input into the CAP for training and classification. The classification performance and the generalization abilities of the proposed approach were tested using two distinct datasets that contained the same types of digitally modulated signals, but had distinct generation parameters. The results showed that the classification of digitally modulated signals using CAPs and CCs proposed in the paper …


View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2023

View Synthesis With Scene Recognition For Cross-View Image Localization, Uddom Lee, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

Image-based localization has been widely used for autonomous vehicles, robotics, augmented reality, etc., and this is carried out by matching a query image taken from a cell phone or vehicle dashcam to a large scale of geo-tagged reference images, such as satellite/aerial images or Google Street Views. However, the problem remains challenging due to the inconsistency between the query images and the large-scale reference datasets regarding various light and weather conditions. To tackle this issue, this work proposes a novel view synthesis framework equipped with deep generative models, which can merge the unique features from the outdated reference dataset with …


Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty Jan 2023

Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty

Electrical & Computer Engineering Faculty Publications

There is a great demand for an efficient security framework which can secure IoT systems from potential adversarial attacks. However, it is challenging to design a suitable security model for IoT considering the dynamic and distributed nature of IoT. This motivates the researchers to focus more on investigating the role of machine learning (ML) in the designing of security models. A brief analysis of different ML algorithms for IoT security is discussed along with the advantages and limitations of ML algorithms. Existing studies state that ML algorithms suffer from the problem of high computational overhead and risk of privacy leakage. …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


Mwirgan: Unsupervised Visible-To Mwir Image Translation With Generative Adversarial Network, Mohammad Shahab Uddin, Chiman Kwan, Jiang Li Jan 2023

Mwirgan: Unsupervised Visible-To Mwir Image Translation With Generative Adversarial Network, Mohammad Shahab Uddin, Chiman Kwan, Jiang Li

Electrical & Computer Engineering Faculty Publications

Unsupervised image-to-image translation techniques have been used in many applications, including visible-to-Long-Wave Infrared (visible-to-LWIR) image translation, but very few papers have explored visible-to-Mid-Wave Infrared (visible-to-MWIR) image translation. In this paper, we investigated unsupervised visible-to-MWIR image translation using generative adversarial networks (GANs). We proposed a new model named MWIRGAN for visible-to-MWIR image translation in a fully unsupervised manner. We utilized a perceptual loss to leverage shape identification and location changes of the objects in the translation. The experimental results showed that MWIRGAN was capable of visible-to-MWIR image translation while preserving the object’s shape with proper enhancement in the translated images and …