Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Modulations Of Lipid Membranes Caused By Antimicrobial Agents And Helix 0 Of Endophilin, Nawal Kishore Khadka Jul 2019

Modulations Of Lipid Membranes Caused By Antimicrobial Agents And Helix 0 Of Endophilin, Nawal Kishore Khadka

USF Tampa Graduate Theses and Dissertations

Understanding the cellular membrane interaction with membrane active biomolecules and antimicrobial agents provides an insight in their working mechanism. Here, we studied the effect of antimicrobial agents; a recently developed peptidomimetics E107-3 and colistin as well as the N-terminal helix H0, of Endophilin A1 on the lipid bilayer.

It is important to discern the interaction mechanism of antimicrobial peptides with lipid membranes in battling multidrug resistant bacterial pathogens. We study the modification of structural and mechanical properties with a recently reported peptidomimetic on lipid bilayer. The compound referred to as E107-3 is synthesized based on the acylated reduced amide scaffold …


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Novel Dna Origami Based Lateral Flow Assay Development, Adrienne Walker Jan 2019

Novel Dna Origami Based Lateral Flow Assay Development, Adrienne Walker

Theses, Dissertations and Capstones

Lateral flow assays (LFA) are used for point-of-care qualitative diagnostics of an analyte of interest, often in non-laboratory environments. Traditionally, the format of a lateral flow assay is to utilize immobilized antibodies on a membrane as the capture probe in conjunction with a reporting immunological recognition system for an analyte captured between them in a sandwich format. However, there are several shortcomings of antibodies which recommend their replacement with other recognition elements, if possible. The research described in this thesis was directed toward using several of the inherent properties of DNA based Origami nanostructures to enable the construction of DNA …