Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

Wayne State University Dissertations

Theses/Dissertations

Graphene

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Electronic Transport In Two-Dimensional Systems In The Quantum Hall Regime, Vinicio Tarquini Jan 2016

Electronic Transport In Two-Dimensional Systems In The Quantum Hall Regime, Vinicio Tarquini

Wayne State University Dissertations

The integer and the fractional quantum Hall effects are essential to the exploration of quantum matters characterized by topological phases. A quantum Hall system hosts one-dimensional (1D) chiral edge channels that manifest zero magnetoresistance, dissipationless due to the broken time reversal symmetry, and quantized Hall resistance v h e^2 with v being the topological invariant (or Chern number). The 1-1 correspondence between the conducting gapless edge channels to the gapped incompressible bulk states is a defining character of a topological insulator (TI). Understanding this correspondence in real systems, especially the origin of its robustness (in terms of the limit of …


Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman Jan 2013

Nano-Silicon/Graphene Composite Anodes For Enhanced Performance Lithium Ion Batteries, Rhet Joseph Caballes De Guzman

Wayne State University Dissertations

The ever evolving technological applications such as with portable electronics and electric vehicles have led to increasing energy demands that have proven the existing commercial LIB capacity insufficient. Recently, the most promising anode material to substitute the traditional graphite is Si. As an anode Si has low discharge potential and theoretical the highest known theoretical capacity (>10 fold of graphite). However, due to the increased accommodated Li+ during charge-discharge reactions, silicon's volume varies up to 400%, causing pulverization and loss of electrical contact.

This dissertation focuses on a systematic approach in developing effective means to utilize Si for improved …


The Electrical Transport Study Of Graphene Nanoribbons And 2d Materials Beyond Graphene, Ming-Wei Lin Jan 2012

The Electrical Transport Study Of Graphene Nanoribbons And 2d Materials Beyond Graphene, Ming-Wei Lin

Wayne State University Dissertations

The electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon (GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm2 V-1 s-1 and an intrinsic bandgap was reported in this study. The experimentally derived bandgap is in quantitative agreement with the results of our electronic-structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the bandgap in non-armchair GNRs is partially due to the magnetic zigzag edges. In addition, electrical transport measurements show that current-annealing effectively removes the impurities on the suspended graphene nanoribbons, uncovering the intrinsic …