Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

University of Tennessee, Knoxville

2015

Nuclear Forensics

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Rapid Dissolution For Destructive Assay Of Nuclear Melt Glass, Jonathan Allen Gill Dec 2015

Rapid Dissolution For Destructive Assay Of Nuclear Melt Glass, Jonathan Allen Gill

Masters Theses

This study evaluates four methods for dissolving complex glassy debris resulting from nuclear detonations. The samples of interest simulate the glassy debris generated from a nuclear detonation’s fireball coming in contact with solid masses. Each method attempts to achieve dissolution through different approaches involving either acid digestion, alkaline digestion, or molten salt fusion. Two of the four methods were modified to retain all elements of the debris or surrogate debris. This retention is critical to the proportional relationships used in identifying fuel types and designs of nuclear weapons. Analysis is conducted with an inductively coupled time of flight mass spectrometer …


Exploring Rapid Radiochemical Separations At The University Of Tennessee Radiochemistry Center Of Excellence, Howard L. Hall, John D. Auxier Ii Nov 2015

Exploring Rapid Radiochemical Separations At The University Of Tennessee Radiochemistry Center Of Excellence, Howard L. Hall, John D. Auxier Ii

Faculty Publications and Other Works -- Institute for Nuclear Security

The University of Tennessee formed its Radiochemistry Center of Excellence (RCoE) in 2013 with support from the U.S. National Nuclear Security Administration. One of the major thrusts of the RCoE is to develop deeper understanding of rapid methods for radiochemical separations that are relevant to both general radiochemical analyses as well as post-detonation nuclear forensics. Early work has included the development and demonstration of rapid separations of lanthanide elements in the gas phase, development of a gas-phase separation front-end for ICP-TOF-MS analysis, and the development of realistic analytical surrogates for post-detonation debris to support methods development.