Open Access. Powered by Scholars. Published by Universities.®
Articles 1 - 4 of 4
Full-Text Articles in Entire DC Network
Applications Of Machine Learning For Improved Patient Selection And Therapy Recommendations, Brendan Elochukwu Odigwe
Applications Of Machine Learning For Improved Patient Selection And Therapy Recommendations, Brendan Elochukwu Odigwe
Theses and Dissertations
The public health domain continues to battle with illness and the growing need for continuous advancement in our approach to clinical care. Individuals experiencing certain conditions undergo tried and tested therapies and medications, practices that have become the mainstay and standard of care in clinical medicine. As with all therapies and medications, they don't always work the same way and do not work for everyone. Some Treatment regimens, like Hydroxyurea medication, which is commonly administered to Sickle cell anemia patients, come with some adverse side effects due to the chemotherapeutic nature of the drug. This would be particularly disappointing if …
Human Activity Recognition (Har) Using Wearable Sensors And Machine Learning, Chrisogonas Odero Odhiambo
Human Activity Recognition (Har) Using Wearable Sensors And Machine Learning, Chrisogonas Odero Odhiambo
Theses and Dissertations
Humans engage in a wide range of simple and complex activities. Human Activity Recognition (HAR) is typically a classification problem in computer vision and pattern recognition, to recognize various human activities. Recent technological advancements, the miniaturization of electronic devices, and the deployment of cheaper and faster data networks have propelled environments augmented with contextual and real-time information, such as smart homes and smart cities. These context-aware environments, alongside smart wearable sensors, have opened the door to numerous opportunities for adding value and personalized services to citizens. Vision-based and sensory-based HAR find diverse applications in healthcare, surveillance, sports, event analysis, Human-Computer …
Deep Learning Based Generative Materials Design, Yong Zhao
Deep Learning Based Generative Materials Design, Yong Zhao
Theses and Dissertations
Discovery of novel functional materials is playing an increasingly important role in many key industries such as lithium batteries for electric vehicles and cell phones. However experimental tinkering of existing materials or Density Functional Theory (DFT) based screening of known crystal structures, two of the major current materials design approaches, are both severely constrained by the limited scale (around 250,000 in ICSD database) and diversity of existing materials and the lack of a sufficient number of materials with annotated properties. How to generate a large number of physically feasible, stable, and synthesizable crystal materials and build accurate property prediction models …
Quadratic Neural Network Architecture As Evaluated Relative To Conventional Neural Network Architecture, Reid Taylor
Quadratic Neural Network Architecture As Evaluated Relative To Conventional Neural Network Architecture, Reid Taylor
Senior Theses
Current work in the field of deep learning and neural networks revolves around several variations of the same mathematical model for associative learning. These variations, while significant and exceptionally applicable in the real world, fail to push the limits of modern computational prowess. This research does just that: by leveraging high order tensors in place of 2nd order tensors, quadratic neural networks can be developed and can allow for substantially more complex machine learning models which allow for self-interactions of collected and analyzed data. This research shows the theorization and development of mathematical model necessary for such an idea to …