Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

University of Central Florida

Electronic Theses and Dissertations

Theses/Dissertations

Liquid crystals

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun Jan 2013

Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun

Electronic Theses and Dissertations

Liquid crystal devices are attractive for many applications such as information displays, spatial light modulators and adaptive optics, because their optical properties are electrically tunable. However, response time of liquid crystal devices is a serious concern for many applications especially for those who require large phase modulation (≥2π). This is because a thick LC layer is usually needed to achieve a large phase shift while the response time of a nematic LC is highly determined by the cell gap.


Self-Assembly Of Squaraine Dyes, Maher A. Qaddoura Jan 2011

Self-Assembly Of Squaraine Dyes, Maher A. Qaddoura

Electronic Theses and Dissertations

Squaraine dyes have been a subject of extensive investigations lately due to their wide applications in important technological fields such as bioimaging probes, bioconjucation, second generation photosensitizers for photodynamic therapy, second harmonic generating organic dyes, two-photon absorbing materials with large cross section values, and, finally, photoconducting materials in photovoltaic cells. While a large number of patents and papers has been produced regarding their applications limited work has been done concerning their thermotropic behavior, including their liquid crystalline properties, or correlation of the crystalline structure to both the solid state aggregation and their photophysical properties. In the first chapter of this …


Cholesteric Liquid Crystal Photonic Crystal Lasers And Photonic Devices, Ying Zhou Jan 2008

Cholesteric Liquid Crystal Photonic Crystal Lasers And Photonic Devices, Ying Zhou

Electronic Theses and Dissertations

This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is …


Fast Response Liquid Crystal Devices, Yung-Hsun Wu Jan 2006

Fast Response Liquid Crystal Devices, Yung-Hsun Wu

Electronic Theses and Dissertations

Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a …


Refractive Indices Of Liquid Crystals And Their Applications In Display And Photonic Devices, Jun Li Jan 2005

Refractive Indices Of Liquid Crystals And Their Applications In Display And Photonic Devices, Jun Li

Electronic Theses and Dissertations

Liquid crystals (LCs) are important materials for flat panel display and photonic devices. Most LC devices use electrical field-, magnetic field-, or temperature-induced refractive index change to modulate the incident light. Molecular constituents, wavelength, and temperature are the three primary factors determining the liquid crystal refractive indices: ne and no for the extraordinary and ordinary rays, respectively. In this dissertation, we derive several physical models for describing the wavelength and temperature effects on liquid crystal refractive indices, average refractive index, and birefringence. Based on these models, we develop some high temperature gradient refractive index LC mixtures for photonic applications, such …