Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

(R2067) Solutions Of Hyperbolic System Of Time Fractional Partial Differential Equations For Heat Propagation, Sagar Sankeshwari, Vinayak Kulkarni Jun 2024

(R2067) Solutions Of Hyperbolic System Of Time Fractional Partial Differential Equations For Heat Propagation, Sagar Sankeshwari, Vinayak Kulkarni

Applications and Applied Mathematics: An International Journal (AAM)

Hyperbolic linear theory of heat propagation has been established in the framework of a Caputo time fractional order derivative. The solution of a system of integer and fractional order initial value problems is achieved by employing the Adomian decomposition approach. The obtained solution is in convergent infinite series form, demonstrating the method’s strengths in solving fractional differential equations. Moreover, the double Laplace transform method is employed to acquire the solution of a system of integer and fractional order boundary conditions in the Laplace domain. An inversion of double Laplace transforms has been achieved numerically by employing the Xiao algorithm in …


(R2074) A Comparative Study Of Two Novel Analytical Methods For Solving Time-Fractional Coupled Boussinesq-Burger Equation, Jyoti U. Yadav, Twinkle R. Singh Jun 2024

(R2074) A Comparative Study Of Two Novel Analytical Methods For Solving Time-Fractional Coupled Boussinesq-Burger Equation, Jyoti U. Yadav, Twinkle R. Singh

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, a comparative study between two different methods for solving nonlinear timefractional coupled Boussinesq-Burger equation is conducted. The techniques are denoted as the Natural Transform Decomposition Method (NTDM) and the Variational Iteration Transform Method (VITM). To showcase the efficacy and precision of the proposed approaches, a pair of different numerical examples are presented. The outcomes garnered indicate that both methods exhibit robustness and efficiency, yielding approximations of heightened accuracy and the solutions in a closed form. Nevertheless, the VITM boasts a distinct advantage over the NTDM by addressing nonlinear predicaments without recourse to the application of Adomian polynomials. …


(R2076) New Exact Solution Of Gilson–Pickering Equation In Plasma, Bingnuo Yang, Weinan Wu, Hongfeng Yu, Peng Guo Jun 2024

(R2076) New Exact Solution Of Gilson–Pickering Equation In Plasma, Bingnuo Yang, Weinan Wu, Hongfeng Yu, Peng Guo

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we use Paul-Painlev´e approach method, extended rational sine-cosine method and extended rational sinh-cosh method to construct the exact solution of the nonlinear Gilson-Pickering (GP) equation in plasma. The exact solution of GP equation obtained by the above three methods is new, and we use mathematical software to draw the two-dimensional and three-dimensional graphs of the new exact solutions. Through the study of nonlinear equations in plasma, this study will enrich the research and connotation of nonlinear development equations in plasma.


Effects Of Magnetic Field And Chemical Reaction On A Time Dependent Casson Fluid Flow, Akhil Mittal, Harshad Patel, Ramesh Patoliya, Vimalkumar Gohil Mar 2024

Effects Of Magnetic Field And Chemical Reaction On A Time Dependent Casson Fluid Flow, Akhil Mittal, Harshad Patel, Ramesh Patoliya, Vimalkumar Gohil

Applications and Applied Mathematics: An International Journal (AAM)

This research paper deals with the effect of chemical reactions and magnetic fields on the hydrodynamics fluid flow of Casson fluid. The novelty of this work is the inclusion of time-dependent flow across a vertical plate with a stepped concentration at the surface in a porous media. The stated phenomenon is modeled in the PDE system and is adapted in the ODE system through similarity transformation. The LT (Laplace Transform) and ILT (Inverse LT) are used to obtain the analytical results for regulating dimension-free movement, thermals, and concentration expression. The exact expression of shear rate, heat exchange rate, and mass …