Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Organellar Zn2+ Homeostasis And The Role Of Trpml Channels In Neuronal Lysosome Physiology And Axonal Transport, Taylor Franklin Minckley Jan 2022

Organellar Zn2+ Homeostasis And The Role Of Trpml Channels In Neuronal Lysosome Physiology And Axonal Transport, Taylor Franklin Minckley

Electronic Theses and Dissertations

Zinc (Zn2+) is crucial for proper cellular function, and as such it is important to measure and track Zn2+ dynamics in living cells. Fluorescent sensors have been used to estimate Zn2+ content of subcellular compartments, but little is known about endolysosomal Zn2+ homeostasis. Similarly, although numerous sensors have been reported, it is unclear whether and how Zn2+ can be released from intracellular compartments into the cytosol due to a lack of probes that can detect physiological dynamics of cytosolic Zn2+. My dissertation started with comparing and characterizing different Zn2+ sensors including the …


Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam May 2018

Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam

Chancellor’s Honors Program Projects

No abstract provided.


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …


Analyzing A-Series Gangliosides In Neurons Following Exposure To Glutamate, Dae Hee Park Aug 2015

Analyzing A-Series Gangliosides In Neurons Following Exposure To Glutamate, Dae Hee Park

Electronic Thesis and Dissertation Repository

Neurons within different brain regions have varying levels of vulnerability to external stress and therefore respond differently to injury. A potential reason to explain this may lie within a key lipid class of the cell’s plasma membrane called gangliosides. These glycosphingolipid species have been shown to play various roles in the maintenance of neuronal viability. The purpose of this study is to use electrospray ionization mass spectrometry (ESI-MS) technique and immunohistochemistry to evaluate the temporal changes in the expression profiles of various ganglioside species during the course of neurodegeneration in rat primary cortical neurons exposed to glutamate toxicity. Primary embryonic …


Mcp-1 And App Involvement Of Glial Differentiation And Migration Of Neuroprogenitor Cells, Emmanuel Vrotsos Jan 2009

Mcp-1 And App Involvement Of Glial Differentiation And Migration Of Neuroprogenitor Cells, Emmanuel Vrotsos

Electronic Theses and Dissertations

Neuroprogenitor cells are an important resource because of their potential to replace damaged cells in the brain caused by trauma and disease. It is of great importance to better understand which factors influence the differentiation and migration of these cells. Previously it has been reported that neuroprogenitor cells undergoing apoptotic stress have increased levels of Amyloid precursor protein (APP) and increased APP expression results in glial differentiation. APP activity was also shown to be required for staurosporine induced glial differentiation of neuroprogenitor cells. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that is expressed during inflammatory. The binding of MCP-1 to …


Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan May 2008

Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan

NYMC Faculty Publications

Oxidative stress is pathogenic in neurological diseases, including stroke. The identity of oxidative stress-inducible transcription factors and their role in propagating the death cascade are not well known. In an in vitro model of oxidative stress, the expression of the bZip transcription factor activating transcription factor 4 (ATF4) was induced by glutathione depletion and localized to the promoter of a putative death gene in neurons. Germline deletion of ATF4 resulted in a profound reduction in oxidative stress-induced gene expression and resistance to oxidative death. In neurons, ATF4 modulates an early, upstream event in the death pathway, as resistance to oxidative …


Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan Aug 2000

Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.


Laminin Potentiates Differentiation Of Pcc4uva Embryonal Carcinoma Into Neurons, T. M. Sweeney, Roy C. Ogle, C. D. Little Sep 1990

Laminin Potentiates Differentiation Of Pcc4uva Embryonal Carcinoma Into Neurons, T. M. Sweeney, Roy C. Ogle, C. D. Little

School of Medical Diagnostics & Translational Sciences Faculty Publications

The embryonal carcinoma PCC4uva differentiates into neurons in response to treatment with retinoic acid and dbcAMP. We used this in vitro model system to study the effects of laminin on early neural differentiation. Laminin substrata markedly potentiate neural differentiation of retinoic acid and dbcAMP-treated cultures. Only laminin induced more rapid neural cell body clustering, neurite growth and neurite fasciculation as compared to type IV collagen, type I collagen, and fibronectin substrata. Exogenous laminin substrata promoted greater cell attachment, cellular spreading and growth to confluence than type IV collagen, type I collagen, fibronectin and glass substrata. Laminin-induced effects were inhibited by …


Laminin Receptors For Neurite Formation, H. K. Kleinman, Roy C. Ogle, F. B. Cannon, C. D. Little, T. M. Sweeney, L. Luckenbill-Edds Feb 1988

Laminin Receptors For Neurite Formation, H. K. Kleinman, Roy C. Ogle, F. B. Cannon, C. D. Little, T. M. Sweeney, L. Luckenbill-Edds

School of Medical Diagnostics & Translational Sciences Faculty Publications

Laminin, a basement membrane glycoprotein promotes both cell attachment and neurite outgrowth. Separate domains on laminin elicit these responses, suggesting that distinct receptors occur on the surface of cells. NG108-15 neuroblastoma-glioma cells rapidly extend long processes in the presence of laminin. We report here that 125I-labeled laminin specifically binds to these cells and to three membrane proteins of 67, 110, and 180 kDa. These proteins were isolated by affinity chromatography on laminin-Sepharose. The 67-kDa protein reacted with antibody to the previously characterized receptor for cell attachment to laminin. Antibodies to the 110-kDa and 180-kDa bands demonstrated that the 110-kDa protein …