Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

PDF

Mice

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 50

Full-Text Articles in Entire DC Network

Differentially Disrupted Spinal Cord And Muscle Energy Metabolism In Spinal And Bulbar Muscular Atrophy, Danielle Debartolo, Frederick Arnold, Y Liu, Elana Molotsky, Hsin-Yao Tang, Diane Merry Mar 2024

Differentially Disrupted Spinal Cord And Muscle Energy Metabolism In Spinal And Bulbar Muscular Atrophy, Danielle Debartolo, Frederick Arnold, Y Liu, Elana Molotsky, Hsin-Yao Tang, Diane Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide-dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of …


Novel Treatments For Pxe: Targeting The Systemic And Local Drivers Of Ectopic Calcification, Ida Joely Jacobs, Qiaoli Li Oct 2023

Novel Treatments For Pxe: Targeting The Systemic And Local Drivers Of Ectopic Calcification, Ida Joely Jacobs, Qiaoli Li

Department of Biochemistry and Molecular Biology Faculty Papers

Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of plasma PPi, the activated DDR/PARP signaling in calcified tissues provides an additional possible mechanism of ectopic calcification in PXE. This study examined the effects of etidronate (ETD), a stable PPi analog, and its combination with minocycline (Mino), a potent inhibitor of DDR/PARP, on ectopic calcification in an Abcc6-/- mouse model of PXE. Abcc6-/- mice, at 4 weeks of …


Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco Apr 2023

Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco

Journal Articles

mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had …


Probing The Role Of Astrocytes In The Pathology Of Fragile X Syndrome With Human Stem Cells, Baiyan Ren Dec 2021

Probing The Role Of Astrocytes In The Pathology Of Fragile X Syndrome With Human Stem Cells, Baiyan Ren

Theses & Dissertations

Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder related to intellectual disability and the most common monogenic cause of autism spectrum disorder. FXS is mainly caused by an expansion of CGG repeats in the 5’-untranslated region of fragile X mental retardation 1 (FMR1) gene, leading to the loss of expression of fragile X mental retardation protein (FMRP). Astrocytes are the most abundant glial cells in the central nervous system (CNS). Loss of FMRP in astrocytes has been found to contribute to structural and functional synaptic deficits in the Fmr1-KO mouse model. The contribution of human astrocytes, however, to the …


The Impact Of Microbial Experience On The Murine Innate Immune Response, Cody Thomas Morrison Dec 2020

The Impact Of Microbial Experience On The Murine Innate Immune Response, Cody Thomas Morrison

Masters Theses

The hygiene hypothesis predicts that certain environmental factors shape overall immune system function in animals and humans. While current specific pathogen free (SPF) mouse models are invaluable for studying the immune system, they have limitations for comparison with humans who have microbial exposures throughout their lifetimes. Several studies have shown that the composition of the immune system of SPF mice more closely resembles that of newborns, whereas the immune system from mice exposed to microbial pathogens more closely reflect adult immunity. In this study we have established a model using traditional SPF mice (“clean mice”) and SPF mice that were …


The Effects Of Insulin-Like Growth Factor-1 (Igf-1) And Insulin-Like Growth Factor Receptor (Igfr) Regulation On Cognition And Structure Of Astrocytes, Sariya Khan May 2020

The Effects Of Insulin-Like Growth Factor-1 (Igf-1) And Insulin-Like Growth Factor Receptor (Igfr) Regulation On Cognition And Structure Of Astrocytes, Sariya Khan

Honors Theses

Insulin-like growth factor-1 (IGF-1) is a neuroendocrine signaling hormone that plays an integral role in bone and tissue growth and development. Inhibition of this hormone is known to disrupt the chemistry of the brain, resulting in cognitive impairments such as those seen in many common neurodegenerative diseases. While much research has been conducted on neurons and their relation with IGF-1, the role of astrocytes still needs to be explored. Our research investigates how astrocytes are affected as a result of IGF-1 regulation. Preliminary studies in our laboratory established a connection between IGF-1 and glial fibrillary acidic protein (GFAP), and in …


The Effects Of Heat-Killed Echinostomatid Parasites On Mice Treated With Dextran Sodium Sulfate (Dss), Natalie Gooder Jan 2019

The Effects Of Heat-Killed Echinostomatid Parasites On Mice Treated With Dextran Sodium Sulfate (Dss), Natalie Gooder

All Graduate Theses, Dissertations, and Other Capstone Projects

Objective: Autoimmune diseases are chronic, incurable, and affect approximately 50 million Americans. This is a strong need for better ways to treat autoimmune diseases. Parasites and parasite proteins have been observed to protect mice from symptoms of induced colitis in mice treated with dextran sodium sulfate (DSS), a model for inflammatory bowel disease (IBD). I hypothesize that non-living echinostomatid parasites, given during DSS treatment, can decrease intestinal inflammation and weight loss, providing a possible novel treatment for IBD.

Methods: A range of DSS concentrations (0.5%-3%) were delivered to female C57BL/6 mice in their drinking water in order to determine the …


Recombinant Listeria Adhesion Protein Expressing Probiotics Protect Against Listeria Monocytogenes Infection In Animal Models, Valerie E. Ryan Dec 2016

Recombinant Listeria Adhesion Protein Expressing Probiotics Protect Against Listeria Monocytogenes Infection In Animal Models, Valerie E. Ryan

Open Access Theses

Listeria monocytogenes (Lm) is a foodborne pathogen, found ubiquitously in nature, and has a high morbidity rate among immunocompromised individuals, the elderly, and especially pregnant women and their fetuses resulting in abortion, stillbirth, and neonatal infection. There are currently no preventative medical interventions against Lm infection. The Listeria adhesion protein (LAP) is present in both pathogenic and non-pathogenic Listeria (i.e., L. innocua) and has shown to interact with host epithelial proteins causing tight junction dysregulation aiding in pathogen attachment and paracellular translocation across the host intestinal epithelium. Our lab has demonstrated that recombinant probiotics, Lactobacillus casei (LbcWT) expressing LAP …


Effect Of Hydroxychloroquine And Characterization Of Autophagy In A Mouse Model Of Endometriosis, A. Ruiz, S. Rockfield, N. Taran, E. Haller, Robert Engelman, I Flores, P Panina-Bordignon, Meera Nanjundan Jan 2016

Effect Of Hydroxychloroquine And Characterization Of Autophagy In A Mouse Model Of Endometriosis, A. Ruiz, S. Rockfield, N. Taran, E. Haller, Robert Engelman, I Flores, P Panina-Bordignon, Meera Nanjundan

Molecular Biosciences Faculty Publications

In endometriosis, the increased survival potential of shed endometrial cells (which normally undergo anoikis) is suggested to promote lesion development. One mechanism that may alter anoikis is autophagy. Using an autophagic flux inhibitor hydroxychloroquine (HCQ), we identified that it reduces the in vitro survival capacity of human endometriotic and endometrial T-HESC cells. We also identified that HCQ could decrease lesion numbers and disrupt lesion histopathology, as well as increase the levels of peritoneal macrophages and the IP-10 (10 kDa interferon-γ-induced protein) chemokine in a mouse model of endometriosis. We noted that RNA levels of a subset of autophagic …


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …


Local Corticotropin Releasing Hormone (Crh) Signals To Its Receptor Crhr1 During Postnatal Development Of The Mouse Olfactory Bulb., Isabella Garcia, Paramjit K Bhullar, Burak Tepe, Joshua Ortiz-Guzman, Longwen Huang, Alexander M Herman, Lesley Chaboub, Benjamin Deneen, Nicholas J Justice, Benjamin R Arenkiel Jan 2016

Local Corticotropin Releasing Hormone (Crh) Signals To Its Receptor Crhr1 During Postnatal Development Of The Mouse Olfactory Bulb., Isabella Garcia, Paramjit K Bhullar, Burak Tepe, Joshua Ortiz-Guzman, Longwen Huang, Alexander M Herman, Lesley Chaboub, Benjamin Deneen, Nicholas J Justice, Benjamin R Arenkiel

Faculty Publications

Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related …


Antibodies Against A Secreted Product Of Staphylococcus Aureus Trigger Phagocytic Killing, Lena Thomer, Carla Emolo, Vilasack Thammavongsa, Hwan Keun Kim, Molly E. Mcadow, Wenqi Yu, Matthew Kieffer, Olaf Schneewind, Dominique Missiakas Jan 2016

Antibodies Against A Secreted Product Of Staphylococcus Aureus Trigger Phagocytic Killing, Lena Thomer, Carla Emolo, Vilasack Thammavongsa, Hwan Keun Kim, Molly E. Mcadow, Wenqi Yu, Matthew Kieffer, Olaf Schneewind, Dominique Missiakas

Molecular Biosciences Faculty Publications

Host immunity against bacteria typically involves antibodies that recognize the microbial surface and promote phagocytic killing. Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of lethal bloodstream infection; however, vaccines and antibody therapeutics targeting staphylococcal surface molecules have thus far failed to achieve clinical efficacy. S. aureus secretes coagulase (Coa), which activates host prothrombin and generates fibrin fibrils that protect the pathogen against phagocytosis by immune cells. Because of negative selection, the coding sequence for the prothrombin-binding D1-D2 domain is highly variable and does not elicit cross-protective immune responses. The R domain, tandem repeats of a 27-residue peptide that bind …


A Lipopolysaccharide-Induced Dna-Binding Protein For A Class Ii Gene In B Cells Is Distinct From Nf-Kappa B, Ellen M. Gravallese, Mark R. Boothby, Cynthia M. Smas, Laurie H. Glimcher Apr 2015

A Lipopolysaccharide-Induced Dna-Binding Protein For A Class Ii Gene In B Cells Is Distinct From Nf-Kappa B, Ellen M. Gravallese, Mark R. Boothby, Cynthia M. Smas, Laurie H. Glimcher

Ellen M. Gravallese

Class II (Ia) major histocompatibility complex molecules are cell surface proteins normally expressed by a limited subset of cells of the immune system. These molecules regulate the activation of T cells and are required for the presentation of antigens and the initiation of immune responses. The expression of Ia in B cells is determined by both the developmental stage of the B cell and by certain external stimuli. It has been demonstrated previously that treatment of B cells with lipopolysaccharide (LPS) results in increased surface expression of Ia protein. However, we have confirmed that LPS treatment results in a significant …


Myoepithelial Cell Morphogenesis And Differentiation In The Mouse Submandibular Salivary Gland In Development And Disease, Elise Marie Gervais Jan 2015

Myoepithelial Cell Morphogenesis And Differentiation In The Mouse Submandibular Salivary Gland In Development And Disease, Elise Marie Gervais

Legacy Theses & Dissertations (2009 - 2024)

Organogenesis is the process by which tissues organize, gain considerable size, and undergo cellular differentiation or specialization to form fully functional organs. To study the processes involved in organogenesis of branched organs, the mouse submandibular salivary gland is frequently used as a model system, as it can undergo morphogenesis and differentiation and be genetically manipulated ex vivo. The mouse submandibular salivary gland undergoes a specific process of outgrowth and invagination known as branching morphogenesis which allows for the significant increase in gland size and complexity, as well as maximization of surface area for secretion of saliva. Surrounding the mouse submandibular …


The Formin Fmnl3 Assembles Plasma Membrane Protrusions That Participate In Cell–Cell Adhesion, Timothy J. Gauvin, Lorna E. Young, Henry N. Higgs Nov 2014

The Formin Fmnl3 Assembles Plasma Membrane Protrusions That Participate In Cell–Cell Adhesion, Timothy J. Gauvin, Lorna E. Young, Henry N. Higgs

Dartmouth Scholarship

FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of …


Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives Nov 2014

Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives

David Grünwald

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3sigma) to be similarly regulated by Nup98. The expression …


Kynurenine Aminotransferase Iii And Glutamine Transaminase L Are Identical Enzymes That Have Cysteine S-Conjugate Beta-Lyase Activity And Can Transaminate L-Selenomethionine, John T. Pinto, Boris F. Krasnikov, Steven Alcutt, Melanie E. Jones, Thambi Dorai, Arthur J L Cooper Nov 2014

Kynurenine Aminotransferase Iii And Glutamine Transaminase L Are Identical Enzymes That Have Cysteine S-Conjugate Beta-Lyase Activity And Can Transaminate L-Selenomethionine, John T. Pinto, Boris F. Krasnikov, Steven Alcutt, Melanie E. Jones, Thambi Dorai, Arthur J L Cooper

NYMC Faculty Publications

Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase …


Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco Sep 2014

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are …


Tlr4 Signaling Is Involved In Brain Vascular Toxicity Of Pcb153 Bound To Nanoparticles, Bei Zhang, Jeong June Choi, Sung Yong Eum, Sylvia Daunert, Michal Toborek May 2013

Tlr4 Signaling Is Involved In Brain Vascular Toxicity Of Pcb153 Bound To Nanoparticles, Bei Zhang, Jeong June Choi, Sung Yong Eum, Sylvia Daunert, Michal Toborek

Graduate Center for Nutritional Sciences Faculty Publications

PCBs bind to environmental particles; however, potential toxicity exhibited by such complexes is not well understood. The aim of the present study is to study the hypothesis that assembling onto nanoparticles can influence the PCB153-induced brain endothelial toxicity via interaction with the toll-like receptor 4 (TLR4). To address this hypothesis, TLR4-deficient and wild type control mice (males, 10 week old) were exposed to PCB153 (5 ng/g body weight) bound to chemically inert silica nanoparticles (PCB153-NPs), PCB153 alone, silica nanoparticles (NPs; diameter, 20 nm), or vehicle. Selected animals were also subjected to 40 min ischemia, followed by a 24 h reperfusion. …


Auf1/Hnrnp D Represses Expression Of Vegf In Macrophages, Abigail Fellows, Mary E. Griffin, Brenda L. Petrella, Lihui Zhong, Fatemeh P. Parvin-Nejad, Roy Fava, Peter Morganelli, R. Brooks Robey, Ralph C. Nichols Feb 2012

Auf1/Hnrnp D Represses Expression Of Vegf In Macrophages, Abigail Fellows, Mary E. Griffin, Brenda L. Petrella, Lihui Zhong, Fatemeh P. Parvin-Nejad, Roy Fava, Peter Morganelli, R. Brooks Robey, Ralph C. Nichols

Dartmouth Scholarship

Vascular endothelial growth factor (VEGF) is a regulator of vascularization in development and is a key growth factor in tissue repair. In disease, VEGF contributes to vascularization of solid tumors and arthritic joints. This study examines the role of the mRNA-binding protein AUF1/heterogeneous nuclear ribonucleoprotein D (AUF1) in VEGF gene expression. We show that overexpression of AUF1 in mouse macrophage-like RAW-264.7 cells suppresses endogenous VEGF protein levels. To study 3′ untranslated region (UTR)–mediated regulation, we introduced the 3′ UTR of VEGF mRNA into a luciferase reporter gene. Coexpression of AUF1 represses VEGF-3′ UTR reporter expression in RAW-264.7 cells and in …


Methamphetamine Administration Targets Multiple Immune Subsets And Induces Phenotypic Alterations Suggestive Of Immunosuppression., Robert Z. Harms, Brenda M. Morsey, Craig W. Boyer, Howard S. Fox, Nora E. Sarvetnick Jan 2012

Methamphetamine Administration Targets Multiple Immune Subsets And Induces Phenotypic Alterations Suggestive Of Immunosuppression., Robert Z. Harms, Brenda M. Morsey, Craig W. Boyer, Howard S. Fox, Nora E. Sarvetnick

Journal Articles: Regenerative Medicine

Methamphetamine (Meth) is a widely abused stimulant and its users are at increased risk for multiple infectious diseases. To determine the impact of meth on the immune system, we utilized a murine model that simulates the process of meth consumption in a typical addict. Our phenotypic analysis of leukocytes from this dose escalation model revealed that meth affected key immune subsets. Meth administration led to a decrease in abundance of natural killer (NK) cells and the remaining NK cells possessed a phenotype suggesting reduced responsiveness. Dendritic cells (DCs) and Gr-1(high) monocytes/macrophages were also decreased in abundance while Gr-1(low) monocytes/macrophages appear …


Differential Il-21 Signaling In Apcs Leads To Disparate Th17 Differentiation In Diabetes-Susceptible Nod And Diabetes-Resistant Nod.Idd3 Mice., Sue M. Liu, David H. Lee, Jenna M. Sullivan, Denise Chung, Anneli Jäger, Bennett O V. Shum, Nora E. Sarvetnick, Ana C. Anderson, Vijay K. Kuchroo Nov 2011

Differential Il-21 Signaling In Apcs Leads To Disparate Th17 Differentiation In Diabetes-Susceptible Nod And Diabetes-Resistant Nod.Idd3 Mice., Sue M. Liu, David H. Lee, Jenna M. Sullivan, Denise Chung, Anneli Jäger, Bennett O V. Shum, Nora E. Sarvetnick, Ana C. Anderson, Vijay K. Kuchroo

Journal Articles: Regenerative Medicine

Type 1 diabetes (T1D) is an autoimmune disease that shows familial aggregation in humans and likely has genetic determinants. Disease linkage studies have revealed many susceptibility loci for T1D in mice and humans. The mouse T1D susceptibility locus insulin-dependent diabetes susceptibility 3 (Idd3), which has a homologous genetic interval in humans, encodes cytokine genes Il2 and Il21 and regulates diabetes and other autoimmune diseases; however, the cellular and molecular mechanisms of this regulation are still being elucidated. Here we show that T cells from NOD mice produce more Il21 and less Il2 and exhibit enhanced Th17 cell generation compared with …


Splice Variant–Specific Cellular Function Of The Formin Inf2 In Maintenance Of Golgi Architecture, Vinay Ramabhadran, Farida Korobova, Gilbert J. Rahme, Henry N. Higgs Oct 2011

Splice Variant–Specific Cellular Function Of The Formin Inf2 In Maintenance Of Golgi Architecture, Vinay Ramabhadran, Farida Korobova, Gilbert J. Rahme, Henry N. Higgs

Dartmouth Scholarship

INF2 is a unique formin that can both polymerize and depolymerize actin filaments. Mutations in INF2 cause the kidney disease focal and segmental glomerulosclerosis. INF2 can be expressed as two C-terminal splice variants: CAAX and non-CAAX. The CAAX isoform contains a C-terminal prenyl group and is tightly bound to endoplasmic reticulum (ER). The localization pattern and cellular function of the non-CAAX isoform have not been studied. Here we find that the two isoforms are expressed in a cell type-dependent manner, with CAAX predominant in 3T3 fibroblasts and non-CAAX predominant in U2OS, HeLa, and Jurkat cells. Although INF2-CAAX is ER localized …


Differential Interactions Of The Formins Inf2, Mdia1, And Mdia2 With Microtubules, Jeremie Gaillard, Bvinay Ramabhadran, Emmanuelle Neumanne, Pinar Gurel, Laurent Blanchoin, Marylin Vantard, Henry N. Higgs Sep 2011

Differential Interactions Of The Formins Inf2, Mdia1, And Mdia2 With Microtubules, Jeremie Gaillard, Bvinay Ramabhadran, Emmanuelle Neumanne, Pinar Gurel, Laurent Blanchoin, Marylin Vantard, Henry N. Higgs

Dartmouth Scholarship

A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (K(d) < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements.


Serum- And Glucocorticoid-Induced Kinase 3 In Recycling Endosomes Mediates Acute Activation Of Na+/H+ Exchanger Nhe3 By Glucocorticoids, Peijian He, Sei-Jung Lee, Songbai Lin, Ursula Seidler, Florian Lang, Geza Fejes-Toth, Aniko Naray-Fejes-Toth, C. Chris Yun Aug 2011

Serum- And Glucocorticoid-Induced Kinase 3 In Recycling Endosomes Mediates Acute Activation Of Na+/H+ Exchanger Nhe3 By Glucocorticoids, Peijian He, Sei-Jung Lee, Songbai Lin, Ursula Seidler, Florian Lang, Geza Fejes-Toth, Aniko Naray-Fejes-Toth, C. Chris Yun

Dartmouth Scholarship

Na(+)/H(+) exchanger 3 (NHE3) is the major Na(+) transporter in the intestine. Serum- and glucocorticoid-induced kinase (SGK) 1 interacts with NHE regulatory factor 2 (NHERF2) and mediates activation of NHE3 by dexamethasone (Dex) in cultured epithelial cells. In this study, we compared short-term regulation of NHE3 by Dex in SGK1-null and NHERF2-null mice. In comparison to wild-type mice, loss of SGK1 or NHERF2 significantly attenuated regulation of NHE3 by Dex but did not completely obliterate the effect. We show that transfection of SGK2 or SGK3 in PS120 cells resulted in robust activation of NHE3 by Dex. However, unlike SGK1 or …


The Incidence Of Type-1 Diabetes In Nod Mice Is Modulated By Restricted Flora Not Germ-Free Conditions., Cecile King, Nora Sarvetnick Jan 2011

The Incidence Of Type-1 Diabetes In Nod Mice Is Modulated By Restricted Flora Not Germ-Free Conditions., Cecile King, Nora Sarvetnick

Journal Articles: Regenerative Medicine

In the NOD mouse, the incidence of type-1 diabetes is thought to be influenced by the degree of cleanliness of the mouse colony. Studies collectively demonstrate that exposure to bacterial antigen or infection in the neonatal period prevents diabetes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], supporting the notion that immunostimulation can benefit the maturation of the postnatal immune system [11]. A widely accepted extrapolation from this data has been the notion that NOD mice maintained under germ-free conditions have an increased incidence of diabetes. However, evidence supporting this influential concept is surprisingly limited [12]. In this …


Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil Jun 2010

Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased …


Innervation, Distribution And Morphology Of Calcitonin Gene Related Peptide And Substancep Immunoreactive Axons In The Whole-Mount Atria Of Fvb Mice, Liang Li Jan 2010

Innervation, Distribution And Morphology Of Calcitonin Gene Related Peptide And Substancep Immunoreactive Axons In The Whole-Mount Atria Of Fvb Mice, Liang Li

Electronic Theses and Dissertations

Degeneration of nociceptive afferent axons and terminals in the heart is associated with painless sudden cardiac death. However, innervation, distribution and morphological structures of sympathetic cardiac nociceptive afferent axons and terminals have not yet been fully characterized. The aim of the present study is to characterize the density, arrangement, and structural features of differentiated sympathetic afferent axons and terminals in whole-mount FVB mouse atria. FVB mice (3-6 months old) were perfused and the tissues were fixed. The right and left atria were processed with immunohistochemistry. Calcitonin gene-related peptide (CGRP) and substance P (SP) are two neuropeptides which have been widely …


Role Of Cyp2a5 In Drug Metabolism, Chemical Toxicity, And Maintenance Of Steroid Hormone Homeostasis : Insights From Studies On A Novel Cyp2a5-Null Mouse Model, Xin Zhou Jan 2009

Role Of Cyp2a5 In Drug Metabolism, Chemical Toxicity, And Maintenance Of Steroid Hormone Homeostasis : Insights From Studies On A Novel Cyp2a5-Null Mouse Model, Xin Zhou

Legacy Theses & Dissertations (2009 - 2024)

The central hypothesis is that CYP2A5 plays an important role in the metabolism of xenobiotic substrates, and in the toxicity induced by over-exposure to drugs, as well as in the metabolism of endogenous compounds and regulation of steroid hormone homeostasis. The specific aims are: 1) to generate and characterize a Cyp2a5-null mouse; 2) to determine the role of CYP2A5 in the systemic clearance of nicotine and cotinine; and 3) to explore the mechanisms underlying the resistance of the lateral nasal gland (LNG) of male Cyp2g1-null/Cyp2a5-low mouse and Cyp2a5-null mouse to acetaminophen (AP) toxicity.


Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan May 2008

Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan

NYMC Faculty Publications

Oxidative stress is pathogenic in neurological diseases, including stroke. The identity of oxidative stress-inducible transcription factors and their role in propagating the death cascade are not well known. In an in vitro model of oxidative stress, the expression of the bZip transcription factor activating transcription factor 4 (ATF4) was induced by glutathione depletion and localized to the promoter of a putative death gene in neurons. Germline deletion of ATF4 resulted in a profound reduction in oxidative stress-induced gene expression and resistance to oxidative death. In neurons, ATF4 modulates an early, upstream event in the death pathway, as resistance to oxidative …