Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco Sep 2014

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco

Rowan-Virtua School of Osteopathic Medicine Departmental Research

The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are …


Regulation Of Saga By The N-Terminus Of Spt7 In Saccharomyces Cerevisiae, Dominik Dobransky Aug 2014

Regulation Of Saga By The N-Terminus Of Spt7 In Saccharomyces Cerevisiae, Dominik Dobransky

Electronic Thesis and Dissertation Repository

Spt7 is a 1,332 residue protein critical for maintaining structural integrity of the SAGA complex. I demonstrated that the extreme N-terminus of Spt7 plays an important role in SAGA function. Deletion of the first 73 (Spt773-1332) and 121 (Spt7121-1332) N- terminal residues resulted in slow growth, decreased transcriptional activation at PHO5 and INO1, and a partial decrease in acetylation at lysine 18 of histone H3 at PHO5. The Spt7121-1332 mutant did not affect Spt7’s association with Gcn5 or Tra1, or its localization within the cell. Mutation of the first four positively charged residues …