Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Entire DC Network

Combining Simulation And The Mspa Nanopore To Study P53 Dynamics And Interactions, Samantha A. Schultz Nov 2023

Combining Simulation And The Mspa Nanopore To Study P53 Dynamics And Interactions, Samantha A. Schultz

Masters Theses

p53 is a transcription factor and an important tumor suppressor protein that becomes activated due to DNA damage. Because of its role as a tumor suppressor, mutations in the gene that encodes it are found in over 50% of human cancers. The N-terminal transactivation domain (NTAD) of p53 is intrinsically disordered and modulates the function and interactions of p53 in the cell. Its disordered structure allows it to be controlled closely by post-translation modifications that regulate p53’s ability to bind DNA and interact with regulatory binding partners. p53 is an attractive target for developing cancer therapeutics, but its intrinsically disordered …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …


The Tumor Suppressor Par-4 Regulates Hypertrophic Obesity, Nathalia Araujo Jan 2021

The Tumor Suppressor Par-4 Regulates Hypertrophic Obesity, Nathalia Araujo

Theses and Dissertations--Toxicology and Cancer Biology

Prostate Apoptosis Response-4 (Par-4) is a tumor suppressor ubiquitously expressed in all tissues and able to selectively induce apoptosis in cancer cells. Although well established in the context of cancer, relatively little is known about the function of Par-4 in the healthy and non-tumorigenic context. Observations from our lab showed that Par-4 knockout mouse lines were obese and displayed adipocyte hypertrophy under a normal chow diet when compared to Par-4 wild-type mice. These Par-4 knockout mice exhibited hepatic steatosis and hyperinsulinemia as secondary consequences of obesity. Par-4 knockout mice displayed increased intestinal dietary fat absorption and its subsequent storage in …


P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer Dec 2020

P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer

Dissertations & Theses (Open Access)

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene which encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 ChIP-sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes which included Mdm2 but not p21. Global p53 activation …


A Novel Intramolecular Interaction In P53, Fan He Mar 2020

A Novel Intramolecular Interaction In P53, Fan He

USF Tampa Graduate Theses and Dissertations

The p53 tumor suppressor is a sequence-specific DNA binding protein that activates gene transcription to regulate cell survival and proliferation. The activation process involves post-translational modifications that suppress p53 degradation by MDM2 and increase p53 DNA binding affinity. p53 is mutated in ~50% of human tumors, with higher frequency in specific tumor types and after relapse. Mutated p53 loses transcriptional activity and gains new functions that drive tumor progression. Both N-terminus (NT) and C-terminus (CT) of p53 contain intrinsically disordered regions. The p53 CT has well-documented effects in regulating DNA binding. CT truncated p53 mutants showed defective DNA binding and …


Alternative Splicing Of Mdm4 In Human Melanomas, Abdullah Salem S. Alatawi Jan 2020

Alternative Splicing Of Mdm4 In Human Melanomas, Abdullah Salem S. Alatawi

Browse all Theses and Dissertations

Melanoma is a potentially lethal type of skin cancer and regarded to be the third most common type of skin cancer. Although melanoma is not as common as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), it is more likely to metastasize than BCC and SCC. Interestingly, the incidence of melanoma continues to go up (expected 2% in 2020), but the deaths continue to decrease (-5.3% in 2020) due to improvements in detection and treatment. The treatment of melanoma depends on several aspects but most importantly the tumor's stage and the location. In the early stages, melanoma can be …


Novel Insights Into The Use Of Ercc1 As A Biomarker For Response To Platinum-Based Chemotherapy In Lung Cancer, Joshua Ryan Heyza Jan 2019

Novel Insights Into The Use Of Ercc1 As A Biomarker For Response To Platinum-Based Chemotherapy In Lung Cancer, Joshua Ryan Heyza

Wayne State University Dissertations

ERCC1/XPF is a DNA endonuclease with variable expression in primary tumor specimens, and has been investigated as a predictive biomarker for efficacy of platinum-based chemotherapy in non-small cell lung cancers where up to 30-60% of tumors harbor low to undetectable ERCC1 expression. The failure of an international, randomized Phase III clinical trial utilizing ERCC1 expression to predict response to platinum-based chemotherapy suggests additional mechanisms underlying the basic biology of ERCC1 in the response to platinum-DNA damage remain unknown. In this work, we aimed to characterize a panel of ERCC1 knockout cell lines generated via CRISPR-Cas9 where we identified a synthetic …


Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez Aug 2016

Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez

Dissertations & Theses (Open Access)

Cancer is one of the leading causes of death and disease in the world. Considerable resources are spent to study and understand cancer, with the hope of developing new treatments and eventually cures that will help millions of people. Efforts to understand cancer are hindered by its inherent complexity and instability. Nonetheless, understanding the basics of tumor development and progression are the key to focused on studying the role of ΔNp63 in cancer, a p53 family member known to be involved in epithelial development, microRNA biogenesis, and stem cell maintenance. Using the strength of in vivo mouse models, we found …


Circumventing Cisplatin Resistance In Ovarian Cancers Through Reactivation Of P53 By Non-Cross-Resistant Platinum Analogs, Michelle Martinez-Rivera Aug 2016

Circumventing Cisplatin Resistance In Ovarian Cancers Through Reactivation Of P53 By Non-Cross-Resistant Platinum Analogs, Michelle Martinez-Rivera

Dissertations & Theses (Open Access)

Abstract

CIRCUMVENTING CISPLATIN RESISTANCE IN OVARIAN CANCERS THROUGH REACTIVATION OF P53 BY NON-CROSS-RESISTANT PLATINUM ANALOGS

Michelle Martinez-Rivera, B.S.

Advisory Professor: Zahid H. Siddik, Ph.D.

Cisplatin (cis-Pt), an anticancer platinum (Pt) drug, is used widely in the treatment of several malignancies, such as ovarian cancer. This Pt compound induces DNA damage, which results in p53 activation through post-translational modifications, mainly phosphorylation, culminating in execution of programmed cell-death. However, despite initial therapeutic response to cis-Pt, clinical resistance to this drug emerges leading to disease progression. Pt-resistance phenotypes have been associated with dysfunction in the p53 signaling pathway. Therefore, an effort to understand …


Cross-Talk Between The Tumor Suppressors Par-4 And P53, Tripti Shrestha Bhattarai Jan 2015

Cross-Talk Between The Tumor Suppressors Par-4 And P53, Tripti Shrestha Bhattarai

Theses and Dissertations--Toxicology and Cancer Biology

This work describes the fascinating interplay between two tumor suppressors Prostate apoptosis response-4 (Par-4) and p53. The guardian of the genome, p53, is frequently mutated in human cancers, and may contribute to therapeutic resistance. However, p53 is intact and functional in normal tissues, and we observed that specific activation of p53 in normal fibroblasts could induce apoptosis selectively in p53-deficient cancer cells. This paracrine apoptotic effect was executed by Par-4 secreted in response to p53 activation. Accordingly, activation of p53 in wild-type mice, but not in p53-/- or Par-4-/- mice, caused systemic elevation of Par-4 that induced apoptosis …


Rheb Dynamics On Lysosomal Membranes Determines Mtorc1 Activity After Loss Of P53 Or Activation Of Ampk, Catherine M. Bell Jan 2015

Rheb Dynamics On Lysosomal Membranes Determines Mtorc1 Activity After Loss Of P53 Or Activation Of Ampk, Catherine M. Bell

Theses and Dissertations

The tumor suppressor TP53 is the most frequently altered gene in human cancers. The growth-promoting complex, mTORC1 plays a part of the oncogenic profile caused by dysfunctional p53. mTORC1 sits downstream of AMPK and other crucial tumor suppressors/oncogenes, PTEN, LKB1, and Akt. The antifolate pemetrexed was found by this laboratory to activate AMPK via the inhibition of the enzyme AICART in de novo purine synthesis. This work presents a mechanism of mTORC1 activation with p53 loss, as well as of mTORC1 inhibition by pemetrexed-induced AMPK. We have found that mTORC1 activity was substantially upregulated by the loss …


Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal Jan 2015

Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal

Theses and Dissertations

New drug discoveries and new approaches towards diagnosis and treatment have improved cancer therapeutics remarkably. One of the most influential and effective discoveries in the field of cancer therapeutics was antimetabolites, such as the antifolates. The interest in antifolates increased as some of the antifolates showed responses in cancers, such as mesothelioma, leukemia, and breast cancers. When pemetrexed (PTX) was discovered, our laboratory had established that the primary mechanism of action of pemetrexed is to inhibit thymidylate 22 synthase (TS) (E. Taylor et al., 1992). Preclinical studies have shown that PTX has a broad range of antitumor activity in human …


New Insights Into The Roles Of Human Dna Damage Checkpoint Protein Atr In The Regulation Of Nucleotide Excision Repair And Dna Damage-Induced Cell Death, Zhengke Li Dec 2013

New Insights Into The Roles Of Human Dna Damage Checkpoint Protein Atr In The Regulation Of Nucleotide Excision Repair And Dna Damage-Induced Cell Death, Zhengke Li

Electronic Theses and Dissertations

Integrity of the human genome is frequently threatened by endogenous and exogenous DNA damaging reagents that may lead to genome instability and cancer. Cells have evolved multiple mechanisms to repair DNA damage or to eliminate the damaged cells beyond repair and to prevent diverse diseases. Among these are ataxia telangiectasia and Rad3-related (ATR)-mediated DNA damage checkpoint and nucleotide excision repair (NER) that are the major pathways by which cells handle ultraviolet C (UV-C)- or other exogenous genotoxin-induced bulky DNA damage. However, it is unclear how these 2 pathways may be coordinated. In this study we show that ATR physically interacts …


Cooperative Tumor Suppression By Arf And P53, Jason Thomas Forys Nov 2013

Cooperative Tumor Suppression By Arf And P53, Jason Thomas Forys

All Theses and Dissertations (ETDs)

Cancer is a complex genetic disease characterized by the inactivation of tumor suppressor genes and enhanced activity of oncogenes leading to deregulated cellular proliferation. Two tumor suppressor genes, p53 and Arf, play important roles in protecting cells against numerous biological stresses. In response to oncogenic signals, increased ARF expression leads to the activation of p53, which in turn leads to the cessation of cell division or induction of an apoptotic response. Interestingly, p53 coordinates repression of Arf transcription, setting up a negative feedback loop with currently unknown physiological significance. Cells that lack p53 express elevated levels of ARF, but it …


Genome-Wide Profiling Unveils Criticial Functions Of P53 In Human Embryonic Stem Cells, Kadir C. Akdemir May 2013

Genome-Wide Profiling Unveils Criticial Functions Of P53 In Human Embryonic Stem Cells, Kadir C. Akdemir

Dissertations & Theses (Open Access)

Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that …


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

Dissertations & Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates …


Characterization Of Beryllium As A Novel Agent To Study Cell Cycle Arrest And Cellular Senescence, Priyatham Gorjala Dec 2012

Characterization Of Beryllium As A Novel Agent To Study Cell Cycle Arrest And Cellular Senescence, Priyatham Gorjala

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cancer cells evade senescence, apoptosis, and other constraints on proliferation, often via mutation of the p53 tumor suppressor gene (TP53). Normal human lung fibroblasts have been shown to enter premature senescence upon exposure to beryllium. In these cells, BeSO4 stabilizes p53 protein, increases p21 gene expression, induces senescence-associated β-galactosidase activity and causes cell proliferation arrest. In the present study, we have investigated whether BeSO4 is able to induce similar effects in cancer cells that have wildtype p53. We have demonstrated that beryllium salt at low concentration can induce molecular changes in the p53 signaling pathway leading to cell …


Hdm2 Small-Molecule Inhibitors For Therapeutic Intervention In B-Cell Lymphoma, Angela Sosin Jan 2012

Hdm2 Small-Molecule Inhibitors For Therapeutic Intervention In B-Cell Lymphoma, Angela Sosin

Wayne State University Dissertations

Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, compromising p53 activity. Therefore, lymphoma is a suitable model for studying therapeutic value of disrupting HDM2-p53 association by small-molecule inhibitors (SMIs). HDM2 SMIs have been developed and are currently under various stages of preclinical and clinical investigation. This study examined various molecular mechanisms associated and biological effects of two different classes of HDM2 SMIs: the spiro-oxindoles (MI-219) and cis-imidazoline (Nutlin-3) in lymphoma cell lines and patient-derived B-lymphoma cells. Surprisingly, results revealed significant quantitative and qualitative differences between these two agents. At the molecular level, effect of Nutlin-3 was generally more …


Global And Specific Controls Of Protein Synthesis In Hibernators, Peipei Pan Dec 2011

Global And Specific Controls Of Protein Synthesis In Hibernators, Peipei Pan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Mammalian hibernation is a highly dynamic physiological process that is composed of a series of torpor bouts, wherein hibernators oscillate between periods of torpor and interbout arousal. Although normally vital to homeostasis, many energetically consumptive processes such as translation or protein synthesis are virtually ceased during hibernation. Earlier studies indicated that protein synthesis had fallen to almost negligible levels. Cap-dependent initiation of translation is well regulated by eukaryotic translation initiation factor 4E (eIF4E) and its binding partner eIF4E-binding protein 1 (4E-BP1) when hibernators cycle in and out the torpor state. Herein, I investigated well-characterized regulatory mechanisms of global and specific …


Dissecting The Interaction Between P53 And Trim24, Aundrietta D. Duncan Aug 2011

Dissecting The Interaction Between P53 And Trim24, Aundrietta D. Duncan

Dissertations & Theses (Open Access)

Dissecting the Interaction of p53 and TRIM24

Aundrietta DeVan Duncan

Supervisory Professor, Michelle Barton, Ph.D.

p53, the “guardian of the genome”, plays an important role in multiple biological processes including cell cycle, angiogenesis, DNA repair and apoptosis. Because it is mutated in over 50% of cancers, p53 has been widely studied in established cancer cell lines. However, little is known about the function of p53 in a normal cell. We focused on characterizing p53 in normal cells and during differentiation. Our lab recently identified a novel binding partner of p53, Tripartite Motif 24 protein (TRIM24). TRIM24 is a member of …


A Novel Function For Aurora B Kinase In The Regulation Of P53 By Phosphorylation, Chris P. Gully May 2011

A Novel Function For Aurora B Kinase In The Regulation Of P53 By Phosphorylation, Chris P. Gully

Dissertations & Theses (Open Access)

The mitotic kinase Aurora B plays a pivotal role in mitosis and cytokinesis and governs the spindle assembly checkpoint which ensures correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in breast and other cancers and may be an important molecular target for chemotherapy. Tumor suppressor p53 is the guardian of the genome and an important negative regulator of the cell cycle. Previously, it was unknown whether Aurora B and p53 had mutual regulation during the cell cycle. A small molecule specific inhibitor of Aurora B, AZD1152, gave us an indication that Aurora B negatively impacted p53 …


Transcriptional Regulation Of Lamb3 By P53, Meghna Jani Jan 2008

Transcriptional Regulation Of Lamb3 By P53, Meghna Jani

Browse all Theses and Dissertations

The p53 tumor-suppressor plays a very important role in the prevention of cancer and it is known that about 50% of all human tumors possess p53 mutations. Although mutations in p53 are most prevalent in human cancers, inactivation of wild-type p53 occurs through many different mechanisms that are independent of p53 mutation or deletion. In an effort to determine novel p53 target genes, our lab employed a microarray method in which p53 was re-activated by RNAi mediated knockdown of Hdm2 and HdmX in MCF7 human breast cancer cell line, harboring wild-type p53 and elevated levels of Hdm2 and HdmX. Gene …


Mdm2 Amplification In Nih3t3l1 Preadipocytes Leads To Mdm2 Elevation In Terminal Adipogenesis, Vaughn Litteral Jan 2008

Mdm2 Amplification In Nih3t3l1 Preadipocytes Leads To Mdm2 Elevation In Terminal Adipogenesis, Vaughn Litteral

Browse all Theses and Dissertations

The p53 protein is a tumor suppressor protein that is mutated or non-functional in nearly all cancers. The Mdm2 protein has the ability to functionally inactivate p53 and these two proteins have been studied extensively in the context of cellular proliferation. In this study, expression of the murine double minute 2 (mdm2) gene was examined in the mouse NIH3T3L1 cell line. Under the proper conditions, the immortalized NIH3T3L1 cells have the ability to differentiate from fibroblasts to adipocytes (Green et al., 1975). This well characterized cell line provides an excellent model to study mdm2 in differentiation. While evaluating the regulation …


In Search For New P53 Regulated Genes, Meldrick Daniel Mpagi Jan 2008

In Search For New P53 Regulated Genes, Meldrick Daniel Mpagi

Browse all Theses and Dissertations

The p53 tumor suppressor protein has the ability to transactivate its target genes whose gene products are involved in carrying out cell cycle arrest, apoptosis, DNA repair, and senescence. Here, I report that two genes may be p53 regulated. Utilizing a microarray method to search for novel p53 target genes, I was able to identify a possible transcriptional target of p53 being solute carrier family 1a1 (SLC1a1). Along with that finding I also identified an E2F-target gene, minichromosome maintenance 10 (MCM10), as being p53 regulated. Gene expression profiling of MCF7 breast cancer cells treated with RNAi targeting Hdm2 and HdmX …