Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng Dec 2019

Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng

Theses & Dissertations

Connexins are integral membrane proteins that oligomerize to form gap junction channels. Ions and small molecules diffuse intercellularly through these channels, allowing individual cellular events to synchronize into the functional response of an entire organ. Gap junction channels composed of Connexin43 (Cx43) mediate electrical coupling and impulse propagation in the normal working myocardium. In the failing heart, Cx43 remodeling (decreased expression, altered phosphorylation state, loss at intercalated discs, and increased presence at lateral membranes) contributes to rhythm disturbances and contractile dysfunction. While there is considerable information regarding key interactions of Cx43 in the regulation of gap junction channels, unfortunately, the …


Characterization Of Endothelial Nitric Oxide Synthase Serine-600 Phosphorylation, Kevin Patel Aug 2019

Characterization Of Endothelial Nitric Oxide Synthase Serine-600 Phosphorylation, Kevin Patel

Master of Science in Chemical Sciences Theses

Endothelial nitric oxide synthase (eNOS) is part of a family of three nitric oxide synthase (NOS) enzymes that catalyze the production of nitric oxide (NO). NO is a gaseous, free-radical signaling molecule that has a variety of cellular and physiological functions that range from maintaining cardiovascular homeostasis to neurotransmission. The function of NO greatly depends on the concentration and is cell type specific. eNOS is the most regulated of the three NOS isoforms and the mechanisms of regulation can be through protein-protein interactions and posttranslational modifications. A connection with eNOS and the cell cycle has begun to form with recent …


Understanding How Map Kinases Influence Endothelial Nitric-Oxide Synthase Activity, Xzaviar Solone May 2019

Understanding How Map Kinases Influence Endothelial Nitric-Oxide Synthase Activity, Xzaviar Solone

Master of Science in Integrative Biology Theses

Mitogen activated protein kinases (MAPK) p38 and ERK have both been reported to bind endothelial nitric oxide synthase (eNOS) with submicromolar affinity via proposed interactions with a pentabasic non-canonical MAPK binding sequence in the autoinhibitory insertion of eNOS. The neuronal isoform, which lacks the pentabasic motif, did not bind either MAPK significantly. In the present study, the pentabasic motif was validated using predictive modeling programming, and eNOS phosphorylation by MAPKs (P38, ERK and JNK) was examined using in vitro kinase assays and immunoblotting. JNK phosphorylation at Ser114 contrasts with ERK, which phosphorylated Ser600, and p38, which phosphorylated …


Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy Jan 2019

Post-Translational Modifications And Functional Studies Of Dksa In Escherichia Coli, Andrew Charles Isidoridy

Legacy Theses & Dissertations (2009 - 2024)

DksA is a bacterial gene regulator that functions synergistically with the stress alarmone ppGpp to mediate the stringent response. DksA also functions independently of ppGpp to regulate transcription of a number of genes. DksA function is dependent on its binding affinity to RNA polymerase and requires specific interactions between RNAP and catalytic amino acids located on the coiled coil tip, D74 and A76. While much of the previous work on DksA has focused on understanding the mechanisms of action and the numerous gene targets for transcriptional regulation, little is known about the mechanisms by which DksA expression and function may …