Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Fancm And Faap24 Maintain Genomic Stability Through Cooperative And Unique Functions, Yucai Wang Dec 2012

Fancm And Faap24 Maintain Genomic Stability Through Cooperative And Unique Functions, Yucai Wang

Dissertations & Theses (Open Access)

Fanconi anemia (FA) is a rare recessive genetic disease with an array of clinical manifestations including multiple congenital abnormalities, progressive bone marrow failure and profound cancer susceptibility. A hallmark of cells derived from FA patients is hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C (MMC) and cisplatin, suggesting that FA- and FA-associated proteins play important roles in protecting cells from DNA interstrand crosslink (ICL) damage. Two genes involved in the FA pathway, FANCM and FAAP24, are of particular interest because they contain DNA interacting domains. However, there are no definitive patient mutations for these two genes, and the …


Dna Repair Fidelity And Cancer : Structural And Kinetic Insights From Dna Polymerase Beta Mutator Variants, Chelsea Lynne Gridley Jan 2012

Dna Repair Fidelity And Cancer : Structural And Kinetic Insights From Dna Polymerase Beta Mutator Variants, Chelsea Lynne Gridley

Legacy Theses & Dissertations (2009 - 2024)

DNA polymerases are essential for genome replication and DNA repair in all living organisms. Precise DNA replication is critical for the preservation of genomic stability. Any insult, endogenous/exogenous, to cellular DNA requires properly functioning repair polymerases. In eukaryotes, DNA polymerase beta, a small enzyme (39 kDa), plays an important role in DNA repair during the base excision repair pathway. Pol beta catalyzes the incorporation of nucleotides in small stretches (1-6 nucleotides) of damaged double-stranded DNA. Should gap-filling synthesis by pol beta be compromised, mutations in genomic DNA accumulate, which are frequently linked to human diseases, including cancers. For this reason, …