Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Metallurgy

Iowa State University

Duane D. Johnson

Articles 1 - 13 of 13

Full-Text Articles in Entire DC Network

Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson Jul 2010

Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson

Duane D. Johnson

Using an optimized-basis Korringa-Kohn-Rostoker-coherent-potential approximation method, we calculate formation enthalpies ΔEf, structural, and magnetic properties of paramagnetic (PM) and ferromagnetic, disordered A1 and ordered L10 CoPt, FePd, and FePt systems that are of interest for high-density magnetic-recording media. To address processing effects, we focus on the point defects that dictate thermal properties and planar defects (e.g., c domain and antiphase boundaries) which can serve as pinning centers for magnetic domains and affect storage properties. We determine bulk Curie (Tc) and order-disorder (To-d) transition temperatures within 4% of observed values, and estimates for nanoparticles. Planar-defect energies γhklx show that the favorable …


Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson Jun 2009

Quantitative Prediction Of Twinning Stress In Fcc Alloys: Application To Cu-Al, Sandeep A. Kibey, Lin-Lin Wang, J. B. Liu, H. T. Johnson, H. Sehitoglu, Duane D. Johnson

Duane D. Johnson

Twinning is one of most prevalent deformation mechanisms in materials. Having established a quantitative theory to predict onset twinning stress τcrit in fcc elemental metals from their generalized planar-fault-energy (GPFE) surface, we exemplify its use in alloys where the Suzuki effect (i.e., solute energetically favors residing at and near planar faults) is operative; specifically, we apply it in Cu-xAl (x is 0, 5, and 8.3 at. %) in comparison with experimental data. We compute the GPFE via density-functional theory, and we predict the solute dependence of the GPFE and τcrit, in agreement with measured values. We show that τcrit correlates …


Systematic, Multisite Short-Range-Order Corrections To The Electronic Structure Of Disordered Alloys From First Principles: The Kkr Nonlocal Cpa From The Dynamical Cluster Approximation, D. A. Biava, Subhradip Ghosh, Duane D. Johnson, W. A. Shelton, Andrei V. Smirnov Sep 2005

Systematic, Multisite Short-Range-Order Corrections To The Electronic Structure Of Disordered Alloys From First Principles: The Kkr Nonlocal Cpa From The Dynamical Cluster Approximation, D. A. Biava, Subhradip Ghosh, Duane D. Johnson, W. A. Shelton, Andrei V. Smirnov

Duane D. Johnson

Although the Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA) is used widely to configurationally average and get electronic structures and energies of disordered alloys, a single-site CPA misses local environment effects, including short-range order (SRO). A proposed nonlocal CPA (NLCPA) recovers translational invariance of the effective medium via k-space coarse graining from the dynamical cluster approximation (DCA), where corrections are systematic as cluster size increases. We implement a first-principles KKR-NLCPA/DCA and show the effects of environment, including SRO, on the electronic structures of fcc CuAu and bcc NiAl.


Importance Of Thermal Disorder On The Properties Of Alloys: Origin Of Paramagnetism And Structural Anomalies In Bcc-Based Fe1−Xalx, Andrei V. Smirnov, W. A. Shelton, Duane D. Johnson Feb 2005

Importance Of Thermal Disorder On The Properties Of Alloys: Origin Of Paramagnetism And Structural Anomalies In Bcc-Based Fe1−Xalx, Andrei V. Smirnov, W. A. Shelton, Duane D. Johnson

Duane D. Johnson

Fe1−xAlx exhibits interesting magnetic and anomalous structural properties as a function of composition and sample processing conditions arising from thermal or off-stoichiometric chemical disorder, and, although well studied, these properties are not understood. In stoichiometric B2 FeAl, including the effects of partial long-range order, i.e., thermal antisites, we find the experimentally observed paramagnetic response with nonzero local moments, in contrast to past investigations that find either a ferromagnetic or nonmagnetic state, both inconsistent with experiment. Moreover, from this magnetochemical coupling, we are able to determine the origins of the observed lattice constant anomalies found in Fe1−xAlx for x≃0.25–0.5 under various …


Temperature-Induced Configurational Excitations For Predicting Thermodynamic And Mechanical Properties Of Alloys, Duane D. Johnson, Andrei V. Smirnov, J. B. Staunton, F. J. Pinski, W. A. Shelton Nov 2000

Temperature-Induced Configurational Excitations For Predicting Thermodynamic And Mechanical Properties Of Alloys, Duane D. Johnson, Andrei V. Smirnov, J. B. Staunton, F. J. Pinski, W. A. Shelton

Duane D. Johnson

We show that a structural energy difference, ΔE, must include explicit symmetry-breaking changes of the electronic structure due to temperature-induced configurational excitations, and why ΔE at T=0 K is not necessarily relevant to thermodynamic and mechanical modeling. In Ni3V, we calculate a tenfold decrease of ΔE between D022 and L12 structures from T=0 K to states of order relevant to experiment. ΔE calculated directly from states with short-range order (8 meV) or with low partial order (7–12 meV) agree with high-T experiment (10 meV).


Incommensurate And Commensurate Antiferromagnetic Spin Fluctuations In Cr And Cr Alloys From Ab Initio Dynamical Spin Susceptibility Calculations, Duane D. Johnson, J. Pulter, B. Ginatempo, E. Bruno, J. B. Staunton Apr 1999

Incommensurate And Commensurate Antiferromagnetic Spin Fluctuations In Cr And Cr Alloys From Ab Initio Dynamical Spin Susceptibility Calculations, Duane D. Johnson, J. Pulter, B. Ginatempo, E. Bruno, J. B. Staunton

Duane D. Johnson

A scheme for making ab initio calculations of the dynamic paramagnetic spin susceptibilities of solids at finite temperatures is described. It is based on time-dependent density functional theory and employs an electronic multiple scattering formalism. Incommensurate and commensurate antiferromagnetic spin fluctuations in paramagnetic Cr and compositionally disordered Cr95V5 and Cr95Re5 alloys are studied together with the connection with the nesting of their Fermi surfaces. We find that the spin fluctuations can be described rather simply in terms of an overdamped oscillator model. Good agreement with inelastic neutron scattering data is obtained.


Charge-Correlation Effects In Calculations Of Atomic Short-Range Order In Metallic Alloys, F. J. Pinksi, J. B. Staunton, Duane D. Johnson Jun 1998

Charge-Correlation Effects In Calculations Of Atomic Short-Range Order In Metallic Alloys, F. J. Pinksi, J. B. Staunton, Duane D. Johnson

Duane D. Johnson

The “local” chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such …


Vibrational Spectra In Ordered And Disordered Ni3al, Jeffrey D. Althoff, Dane Morgan, Didier De Fontaine, Mark Asta, S. M. Foiles, Duane D. Johnson Sep 1997

Vibrational Spectra In Ordered And Disordered Ni3al, Jeffrey D. Althoff, Dane Morgan, Didier De Fontaine, Mark Asta, S. M. Foiles, Duane D. Johnson

Duane D. Johnson

We calculate the vibrational density of states (DOS) and corresponding thermodynamic properties of L12 ordered and disordered Ni3Al in the quasiharmonic approximation using the embedded-atom method. Vibrational and thermodynamic properties, including vibrational entropy differences between ordered and disordered states, are found to be in good agreement with experiment. The DOS of the configurationally disordered alloy resembles a broadened version of the DOS of the L12 phase, not a one-atom per cell fcc DOS, and is shifted downward in frequency because the disordered state has a larger volume than the ordered phase. Calculations of the projected DOS indicate that high-frequency modes …


Electronic Origins Of Ordering In Multicomponent Metallic Alloys: Application To The Cu-Ni-Zn System, J. D. Althoff, Duane D. Johnson, F. J. Pinski, J. B. Staunton Apr 1996

Electronic Origins Of Ordering In Multicomponent Metallic Alloys: Application To The Cu-Ni-Zn System, J. D. Althoff, Duane D. Johnson, F. J. Pinski, J. B. Staunton

Duane D. Johnson

We investigate the ordering tendencies of the fcc Cu-Ni-Zn system using a recently developed first-principles, density-functional-based theory of atomic short-range order (ASRO) in disordered substitutional alloys of an arbitrary number of components. We find for the binary alloys a variety of effects which should lead to competition in the ternaries: commensurate ordering (Ni-Zn), long-period ordering (Cu-rich Cu-Zn), and clustering (Cu-Ni), in agreement with experiment. We calculate the ASRO of various disordered ternary alloys (as described by the Warren-Cowley pair-correlation function) and discuss its relationship to the electronic structure of the binary and ternary disordered alloys. We find [100]-type ASRO over …


Origin Of The 〈11/20〉 Atomic Short-Range Order In Au-Rich Au-Fe Alloys, M. F. Ling, J. B. Staunton, Duane D. Johnson, F. J. Pinski Aug 1995

Origin Of The 〈11/20〉 Atomic Short-Range Order In Au-Rich Au-Fe Alloys, M. F. Ling, J. B. Staunton, Duane D. Johnson, F. J. Pinski

Duane D. Johnson

We have calculated the atomic short-range order (ASRO) and paramagnetic susceptibility in high-temperature, chemically disordered Au75Fe25 and Au90Fe10, using a density-functional-based, electronic-structure method. For both alloys, we obtain 〈11/20〉-type ASRO, in excellent agreement with experiments performed on samples that have been fast quenched from high temperature. We also identify the underlying electronic mechanism responsible for this unusual ordering behavior. During annealing at high temperatures, we suggest that aligning local moments via an external magnetic field will produce interesting AuFe alloys with 〈100〉-type ASRO.


Commensurate And Incommensurate Ordering Tendencies In The Ternary Fcc Cu-Ni-Zn System, J. D. Althoff, Duane D. Johnson, F. J. Pinski Jan 1995

Commensurate And Incommensurate Ordering Tendencies In The Ternary Fcc Cu-Ni-Zn System, J. D. Althoff, Duane D. Johnson, F. J. Pinski

Duane D. Johnson

We show that Fermi-surface (FS) nesting drives both the incommensurate and commensurate ordering tendencies of the fcc ternary Cu-Ni-Zn system. Surprisingly, commensurate order persists over a wide range of composition, despite its origins. For Cu2NiZn, we discuss how FS nesting and the other effects of alloying lead to ordering tendencies consistent with the experimentally observed order-disorder transformations. All calculations are based on a first-principles theory of the atomic short-range order in alloys with an arbitrary number of components.


Compositional Short-Range Ordering In Metallic Alloys: Band-Filling, Charge-Transfer, And Size Effects From A First-Principles All-Electron Landau-Type Theory, J. B. Staunton, Duane D. Johnson, F. J. Pinski Jul 1994

Compositional Short-Range Ordering In Metallic Alloys: Band-Filling, Charge-Transfer, And Size Effects From A First-Principles All-Electron Landau-Type Theory, J. B. Staunton, Duane D. Johnson, F. J. Pinski

Duane D. Johnson

Using a mean-field statistical description, we derive a general formalism to investigate atomic short-range order in alloys based on a density-functional description of the finite-temperature, grand potential of the random alloy. This ‘‘first-principles,’’ Landau-type approach attempts to treat several contributions (electronic structure, Fermi surface, electrostatics, magnetism, etc.) to the electronic energy on an equal footing. An important ingredient for the statistical averaging is the replacement of the molecular mean fields (Weiss fields) with Onsager cavity fields, which forces the diagonal part of the fluctuation-dissipation theorem to be obeyed. To show its general applicability and usefulness, we apply the theory to …


Total-Energy And Pressure Calculations For Random Substitutional Alloys, Duane D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Györffy, G. M. Stocks May 1990

Total-Energy And Pressure Calculations For Random Substitutional Alloys, Duane D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Györffy, G. M. Stocks

Duane D. Johnson

We present the details and the derivation of density-functional-based expressions for the total energy and pressure for random substitutional alloys (RSA) using the Korringa-Kohn-Rostoker Green’s-function approach in combination with the coherent-potential approximation (CPA) to treat the configurational averaging. This includes algebraic cancellation of various electronic core contributions to the total energy and pressure, as in ordered-solid muffin-tin-potential calculations. Thus, within the CPA, total-energy and pressure calculations for RSA have the same foundation and have been found to have the same accuracy as those obtained in similar calculations for ordered solids. Results of our calculations for the impurity formation energy, and …