Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Center for Environmental and Systems Biochemistry Faculty Publications

2017

Mice

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Noninvasive Liquid Diet Delivery Of Stable Isotopes Into Mouse Models For Deep Metabolic Network Tracing, Ramon C. Sun, Teresa W.-M. Fan, Pan Deng, Richard M. Higashi, Andrew N. Lane, Anh-Thu Le, Timothy L. Scott, Qiushi Sun, Marc O. Warmoes, Ye Yang Nov 2017

Noninvasive Liquid Diet Delivery Of Stable Isotopes Into Mouse Models For Deep Metabolic Network Tracing, Ramon C. Sun, Teresa W.-M. Fan, Pan Deng, Richard M. Higashi, Andrew N. Lane, Anh-Thu Le, Timothy L. Scott, Qiushi Sun, Marc O. Warmoes, Ye Yang

Center for Environmental and Systems Biochemistry Faculty Publications

Delivering isotopic tracers for metabolic studies in rodents without overt stress is challenging. Current methods achieve low label enrichment in proteins and lipids. Here, we report noninvasive introduction of 13C6-glucose via a stress-free, ad libitum liquid diet. Using NMR and ion chromatography-mass spectrometry, we quantify extensive 13C enrichment in products of glycolysis, the Krebs cycle, the pentose phosphate pathway, nucleobases, UDP-sugars, glycogen, lipids, and proteins in mouse tissues during 12 to 48 h of 13C6-glucose feeding. Applying this approach to patient-derived lung tumor xenografts (PDTX), we show that the liver supplies glucose-derived Gln …


Probing The Metabolic Phenotype Of Breast Cancer Cells By Multiple Tracer Stable Isotope Resolved Metabolomics, Andrew N. Lane, Julie Tan, Yali Wang, Jun Yan, Richard M. Higashi, Teresa W. -M. Fan Sep 2017

Probing The Metabolic Phenotype Of Breast Cancer Cells By Multiple Tracer Stable Isotope Resolved Metabolomics, Andrew N. Lane, Julie Tan, Yali Wang, Jun Yan, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Breast cancers vary by their origin and specific set of genetic lesions, which gives rise to distinct phenotypes and differential response to targeted and untargeted chemotherapies. To explore the functional differences of different breast cell types, we performed Stable Isotope Resolved Metabolomics (SIRM) studies of one primary breast (HMEC) and three breast cancer cells (MCF-7, MDAMB-231, and ZR75-1) having distinct genotypes and growth characteristics, using 13C6-glucose, 13C-1+2-glucose, 13C5,15N2-Gln, 13C3-glycerol, and 13C8-octanoate as tracers. These tracers were designed to probe the central energy producing …


Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi Jul 2017

Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi

Center for Environmental and Systems Biochemistry Faculty Publications

Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different …