Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

PDF

Selected Works

2018

Signaling

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

Protein Carbonylation Of An Amino Acid Residue Of The Na/K‐Atpase Α1 Subunit Determines Na/K‐Atpase Signaling And Sodium Transport In Renal Proximal Tubular Cells, Yanling Yan, Anna P. Shapiro, Brahma R. Mopidevi, Muhammad Chaudhry, Kyle Maxwell, Steven T. Haller, Christopher A. Drummond, David J. Keendey, Jiang Tian, Deepak Malhorta, Zijian Xie, Joseph I. Shapiro Md, Jiang Liu Aug 2018

Protein Carbonylation Of An Amino Acid Residue Of The Na/K‐Atpase Α1 Subunit Determines Na/K‐Atpase Signaling And Sodium Transport In Renal Proximal Tubular Cells, Yanling Yan, Anna P. Shapiro, Brahma R. Mopidevi, Muhammad Chaudhry, Kyle Maxwell, Steven T. Haller, Christopher A. Drummond, David J. Keendey, Jiang Tian, Deepak Malhorta, Zijian Xie, Joseph I. Shapiro Md, Jiang Liu

Jiang Liu

Background We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K‐ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K‐ATPase α1 subunit, reactive oxygen species are required for ouabain‐stimulated Na/K‐ATPase/c‐Src signaling and subsequent regulation of active transepithelial 22Na+ transport. In the present study we sought to determine the functional role of Pro222 carbonylation in Na/K‐ATPase signaling and sodium handling.

Methods and Results Stable pig α1 knockdown LLC‐PK1‐originated PY‐17 cells were rescued by expressing wild‐type rat α1 and rat α1 with …


Protein Carbonylation Of An Amino Acid Residue Of The Na/K‐Atpase Α1 Subunit Determines Na/K‐Atpase Signaling And Sodium Transport In Renal Proximal Tubular Cells, Yanling Yan, Anna P. Shapiro, Brahma R. Mopidevi, Muhammad Chaudhry, Kyle Maxwell, Steven T. Haller, Christopher A. Drummond, David J. Keendey, Jiang Tian, Deepak Malhorta, Zijian Xie, Joseph I. Shapiro Md, Jiang Liu Aug 2018

Protein Carbonylation Of An Amino Acid Residue Of The Na/K‐Atpase Α1 Subunit Determines Na/K‐Atpase Signaling And Sodium Transport In Renal Proximal Tubular Cells, Yanling Yan, Anna P. Shapiro, Brahma R. Mopidevi, Muhammad Chaudhry, Kyle Maxwell, Steven T. Haller, Christopher A. Drummond, David J. Keendey, Jiang Tian, Deepak Malhorta, Zijian Xie, Joseph I. Shapiro Md, Jiang Liu

Zijian Xie

Background We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K‐ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K‐ATPase α1 subunit, reactive oxygen species are required for ouabain‐stimulated Na/K‐ATPase/c‐Src signaling and subsequent regulation of active transepithelial 22Na+ transport. In the present study we sought to determine the functional role of Pro222 carbonylation in Na/K‐ATPase signaling and sodium handling.

Methods and Results Stable pig α1 knockdown LLC‐PK1‐originated PY‐17 cells were rescued by expressing wild‐type rat α1 and rat α1 with …


Protein Carbonylation Of An Amino Acid Residue Of The Na/K‐Atpase Α1 Subunit Determines Na/K‐Atpase Signaling And Sodium Transport In Renal Proximal Tubular Cells, Yanling Yan, Anna P. Shapiro, Brahma R. Mopidevi, Muhammad Chaudhry, Kyle Maxwell, Steven T. Haller, Christopher A. Drummond, David J. Keendey, Jiang Tian, Deepak Malhorta, Zijian Xie, Joseph I. Shapiro Md, Jiang Liu Aug 2018

Protein Carbonylation Of An Amino Acid Residue Of The Na/K‐Atpase Α1 Subunit Determines Na/K‐Atpase Signaling And Sodium Transport In Renal Proximal Tubular Cells, Yanling Yan, Anna P. Shapiro, Brahma R. Mopidevi, Muhammad Chaudhry, Kyle Maxwell, Steven T. Haller, Christopher A. Drummond, David J. Keendey, Jiang Tian, Deepak Malhorta, Zijian Xie, Joseph I. Shapiro Md, Jiang Liu

Yanling Yan

Background We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K‐ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K‐ATPase α1 subunit, reactive oxygen species are required for ouabain‐stimulated Na/K‐ATPase/c‐Src signaling and subsequent regulation of active transepithelial 22Na+ transport. In the present study we sought to determine the functional role of Pro222 carbonylation in Na/K‐ATPase signaling and sodium handling.

Methods and Results Stable pig α1 knockdown LLC‐PK1‐originated PY‐17 cells were rescued by expressing wild‐type rat α1 and rat α1 with …


The Trade-Off Between Dietary Salt And Cardiovascular Disease; A Role For Na/K-Atpase Signaling?, Joe X. Xie, Anna Pearl Shapiro, Joseph I. Shapiro Md Aug 2018

The Trade-Off Between Dietary Salt And Cardiovascular Disease; A Role For Na/K-Atpase Signaling?, Joe X. Xie, Anna Pearl Shapiro, Joseph I. Shapiro Md

Joseph I Shapiro MD

It has been postulated for some time that endogenous digitalis-like substances, also called cardiotonic steroids (CTS), exist, and that these substances are involved in sodium handling. Within the past 20 years, these substances have been unequivocally identified and measurements of circulating and tissue concentrations have been made. More recently, it has been identified that CTS also mediate signal transduction through the Na/K-ATPase, and consequently been implicated in profibrotic pathways. This review will discuss the mechanism of CTS in renal sodium handling and a potential “trade-off” effect from their role in inducing tissue fibrosis.


Carbonylationmodificationregulatesna/K-Atpasesignalingandsaltsensitivity:Areviewandahypothesis, Preeya Shah Phd, Rebecca Martin, Yanling Yan, Joseph I. Shapiro Md, Jiang Liu Aug 2018

Carbonylationmodificationregulatesna/K-Atpasesignalingandsaltsensitivity:Areviewandahypothesis, Preeya Shah Phd, Rebecca Martin, Yanling Yan, Joseph I. Shapiro Md, Jiang Liu

Jiang Liu

Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal …


Carbonylationmodificationregulatesna/K-Atpasesignalingandsaltsensitivity:Areviewandahypothesis, Preeya Shah Phd, Rebecca Martin, Yanling Yan, Joseph I. Shapiro Md, Jiang Liu Aug 2018

Carbonylationmodificationregulatesna/K-Atpasesignalingandsaltsensitivity:Areviewandahypothesis, Preeya Shah Phd, Rebecca Martin, Yanling Yan, Joseph I. Shapiro Md, Jiang Liu

Joseph I Shapiro MD

Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal …


Carbonylationmodificationregulatesna/K-Atpasesignalingandsaltsensitivity:Areviewandahypothesis, Preeya Shah Phd, Rebecca Martin, Yanling Yan, Joseph I. Shapiro Md, Jiang Liu Aug 2018

Carbonylationmodificationregulatesna/K-Atpasesignalingandsaltsensitivity:Areviewandahypothesis, Preeya Shah Phd, Rebecca Martin, Yanling Yan, Joseph I. Shapiro Md, Jiang Liu

Yanling Yan

Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal …