Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences

Marshall University

Series

Development

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

Thrombospondin Receptor Α2Δ-1 Promotes Synaptogenesis And Spinogenesis Via Postsynaptic Rac1, W. Chris Risher, Namsoo Kim, Sehwon Koh, Ji‑Eun Cho, Petar Mitev, Erin F. Spence, Louis‑Jan Pilaz, Dongqing Wang, Guoping Feng, Debra L. Silver, Scott H. Soderling, Henry H. Yin, Cagla Eroglu Oct 2018

Thrombospondin Receptor Α2Δ-1 Promotes Synaptogenesis And Spinogenesis Via Postsynaptic Rac1, W. Chris Risher, Namsoo Kim, Sehwon Koh, Ji‑Eun Cho, Petar Mitev, Erin F. Spence, Louis‑Jan Pilaz, Dongqing Wang, Guoping Feng, Debra L. Silver, Scott H. Soderling, Henry H. Yin, Cagla Eroglu

Biomedical Sciences

Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP–α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 …