Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Entire DC Network

Mechatronics Education At Kettering University: Development Of Learning- Specific Hardware And Software, Jeffrey Hargrove, Theodore J. Stokes Oct 2019

Mechatronics Education At Kettering University: Development Of Learning- Specific Hardware And Software, Jeffrey Hargrove, Theodore J. Stokes

Jeffrey Hargrove

A series of learning-specific electronic circuit boards and associated software has been developed to support mechatronics education in the Mechanical Engineering Department at Kettering University. The boards are designed to interface to the Toshiba TLCS-900H Microprocessor Trainer and Evaluation Board. The purpose of these boards is to provide mechanical engineering students of mechatronics with robust hardware that readily permits interfacing of sensors and actuators to microcontrollers used in mechatronic applications. Further, the boards feature signal conditioning circuits for use in conjunction with sensors, and driver circuits for operating high-current actuating devices. Supporting software has been written to permit ready use …


Development And Implementation Of Mechatronics Education At Kettering University, Jeffrey Hargrove Oct 2019

Development And Implementation Of Mechatronics Education At Kettering University, Jeffrey Hargrove

Jeffrey Hargrove

The Mechanical Engineering Department at Kettering University has completed development of a significant new component of education in mechatronics. The work began in the fall of 1997 as the principal part of an award for “Instrumentation and Laboratory Improvement” by the Division of Undergraduate Education of the National Science Foundation. It has culminated with the successful implementation of two undergraduate courses in mechatronics, two mechatronics laboratories and a website to support the educational endeavors of the mechatronics students. As will be described in this paper, the first course and its laboratory exercises are designed specifically to provide the students with …


Crash Safety In The Introductory Physics Lab, Daniel Ludwigsen, Janet Brelin-Fornari, Joseph Neal Sep 2019

Crash Safety In The Introductory Physics Lab, Daniel Ludwigsen, Janet Brelin-Fornari, Joseph Neal

Daniel Ludwigsen

Crash Safety in the Introductory Physics Lab Abstract In the field of vehicle occupant protection and crash safety, the Deceleration Sled offers researchers a controlled, repeatable, and relatively cost-effective means to test interior parts such as safety restraint systems. The sled can accelerate a 2000 lb payload to achieve a speed of 40 mph before a hydraulically controlled deceleration models the deformation of the vehicle structure during a crash. Understanding the dynamics of the sled and interpreting test results incorporates many of the core concepts of a first course in introductory physics. This application of physics principles is the inspiration …


Pre-Methylation Of Lignin To Improve Storage Stability Of Oil Produced By Solvent Liquefaction, Jae-Young Kim, Parinaz Hafezi-Sefat, Sarah D. Cady, Ryan G. Smith, Robert C. Brown Sep 2019

Pre-Methylation Of Lignin To Improve Storage Stability Of Oil Produced By Solvent Liquefaction, Jae-Young Kim, Parinaz Hafezi-Sefat, Sarah D. Cady, Ryan G. Smith, Robert C. Brown

Sarah Cady

In this study, we methylated hydroxyl groups (phenolic hydroxyl: Phe-OH and aliphatic hydroxyl: Aliph-OH) in soda lignin (SL) prior to solvent liquefaction to improve storage stability of the resulting oil. We investigated two methylating reagents, dimethyl sulfate (DMS) and dimethyl carbonate (DMC), for selective Phe-OH and total hydroxyl group (Phe-OH and Aliph-OH) blocking. Samples of SL, DMS-SL, and DMC-SL were depolymerized into oils under supercritical ethanol (350 °C). Both methylated lignins produced higher amounts of oils and smaller amounts of char compared to untreated SL due to suppressed charring reactions. Oil produced from SL had relatively higher functional group contents …


Deformation Of Multifunctional Materials At Various Time And Length Scales: A Dic-Based Study, Behrad Koohbor Aug 2019

Deformation Of Multifunctional Materials At Various Time And Length Scales: A Dic-Based Study, Behrad Koohbor

Behrad Koohbor

The focus in the present work is to explore and characterize the underlying deformation and failure mechanisms in multifunctional materials including woven composites and polymeric foams, using full-field measurements. Attention has been especially drawn towards the challenges associated with characterizing these materials at extreme length and time scales, and investigating the advantages of full-field measurements to resolve the existing limitations. Accordingly, the current limitations in the study of dynamic deformation response of low-impedance materials are identified. An approach based on the general stress equilibrium is presented and successfully implemented to include the concurrent effects of inertia and material compressibility into …


Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel Aug 2019

Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel

Ted von Hippel

I conduct a systems-level study of direct air capture of CO2 using techniques from thermal physics. This system relies on a combination of an efficient heat exchanger, radiative cooling, and refrigeration, all at industrial scale and operated in environments at low ambient temperatures. While technological developments will be required for such a system to operate efficiently, those developments rest on a long history of refrigeration expertise and technology, and they can be developed and tested at modest scale. I estimate that the energy required to remove CO2 via this approach is comparable to direct air capture by other techniques. The …


Developing A Workflow To Integrate Tree Inventory Data Into Urban Energy Models, Farzad Hashemi, Breanna L. Marmur, Ulrike Passe, Janette R. Thompson Jun 2019

Developing A Workflow To Integrate Tree Inventory Data Into Urban Energy Models, Farzad Hashemi, Breanna L. Marmur, Ulrike Passe, Janette R. Thompson

Farzad Hashemi

Building energy simulation is of considerable interest and benefit for architects, engineers, and urban planners. Only recently has it become possible to develop integrated energy models for clusters of buildings in urban areas. Simulating energy consumption of the built environment on a relatively large scale (e.g., such as a neighborhood) will be necessary to obtain more reliable results, since building energy parameters are influenced by characteristics of the nearby environment. Therefore, the construction of a 3-D model of urban built areas with detail of the near-building environment should enhance simulation approaches and provide more accurate results. This paper describes the …


Crowdsourcing Image Analysis For Plant Phenomics To Generate Ground Truth Data For Machine Learning, Naihui Zhou, Zachary D. Siegel, Scott Zarecor, Nigel Lee, Darwin A. Campbell, Carson M. Andorf, Dan Nettleton, Carolyn J. Lawrence-Dill, Baskar Ganapathysubramanian, Jonathan W. Kelly, Iddo Friedberg Jun 2019

Crowdsourcing Image Analysis For Plant Phenomics To Generate Ground Truth Data For Machine Learning, Naihui Zhou, Zachary D. Siegel, Scott Zarecor, Nigel Lee, Darwin A. Campbell, Carson M. Andorf, Dan Nettleton, Carolyn J. Lawrence-Dill, Baskar Ganapathysubramanian, Jonathan W. Kelly, Iddo Friedberg

Dan Nettleton

The accuracy of machine learning tasks critically depends on high quality ground truth data. Therefore, in many cases, producing good ground truth data typically involves trained professionals; however, this can be costly in time, effort, and money. Here we explore the use of crowdsourcing to generate a large number of training data of good quality. We explore an image analysis task involving the segmentation of corn tassels from images taken in a field setting. We investigate the accuracy, speed and other quality metrics when this task is performed by students for academic credit, Amazon MTurk workers, and Master Amazon MTurk …


The Impact Of Trees On Passive Survivability During Extreme Heat Events In Warm And Humid Regions, Ulrike Passe, Janette R. Thompson, Baskar Ganapathysubramanian, Boshun Gao, Breanna L. Marmur Apr 2019

The Impact Of Trees On Passive Survivability During Extreme Heat Events In Warm And Humid Regions, Ulrike Passe, Janette R. Thompson, Baskar Ganapathysubramanian, Boshun Gao, Breanna L. Marmur

Breanna L. Marmur

Communities are increasingly affected by excessive heat. The likelihood of extreme heat events is predicted to increase in the Midwest region of the United States. By mid-century (2036–2065), one year out of 10 is projected to have a 5-day period that is 13°F warmer than a comparable earlier period (1976–2005). The frequency of high humidity/dew point days (“extra moist tropical air mass days,” MT++ synoptic climate classification system) has also increased significantly during a similar period (1975–2010) and between 2010 and 2014 included 8 of 26 heat events. This impact is exacerbated by the fact that many residences in low-income …


The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur Apr 2019

The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur

Breanna L. Marmur

Granular mixing processes are important to many industries including the pharmaceutical, agricultural, and biotechnology industries. These processes often require both a high degree of homogeneity and a high degree of customizability. As granular mixing processes are so widely employed, a thorough understanding of the mixing dynamics is necessary to understand and control the resulting products. Research into granular mixing processes has been, thus far, largely focused on laboratory scale mixers with simple geometries, while actual industrial processes often require large mixers with complex geometries. Moreover, granular mixing processes are often very sensitive to changes in operating conditions and any solutions …


Effect Of Biomass Inlet Concentration On Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur, Theodore J. Heindel Apr 2019

Effect Of Biomass Inlet Concentration On Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur, Theodore J. Heindel

Breanna L. Marmur

The renewable energy industry relies on double screw pyrolyzers to convert cellulosic biomass into bio-oil. Bio-oil can then be converted into synthetic gasoline, diesel, and other transportation fuels, or can be converted into biobased chemicals for a wide range of applications. One of the processes by which bio-oil is produced in industry today is through fast pyrolysis, the fast thermal decomposition of organic material in the absence of oxygen. One type of pyrolyzer, a double screw pyrolyzer, features two intermeshing screws encased in a reactor which mechanically conveys and mixes the biomass and heat carrier media. The mixing effectiveness of …


Layered Wicks Enable Passive Transport Of Condensation Out Of Cooling Systems, Nhicolas Aponte, Jordan Morrow, Gennifer Riley, Partha P. Chakraborty, Melanie M. Derby Apr 2019

Layered Wicks Enable Passive Transport Of Condensation Out Of Cooling Systems, Nhicolas Aponte, Jordan Morrow, Gennifer Riley, Partha P. Chakraborty, Melanie M. Derby

Nhicolas Aponte

Cooling systems, like condensers or cooling towers of a power plant, transfer heat out of a system. The cooling process often occurs through the condensation of water, which forms a liquid film that reduces heat transfer. This problem makes cooling systems larger and more costly. One approach to this problem is drop-wise condensation in which condensed water gathers in the form of droplets which can then run off, preventing the reduction of heat transfer caused by the liquid film. For this solution to be effective in industry, a hydrophobic coating would need to last over 10 years, which is difficult …


Sure Abstract - Spring 2019: Biomimetic Metamaterial Scales Enhancing Thermal Coatings’ Mechanical Properties For Turbine Blades, Ryan Horton Feb 2019

Sure Abstract - Spring 2019: Biomimetic Metamaterial Scales Enhancing Thermal Coatings’ Mechanical Properties For Turbine Blades, Ryan Horton

Ryan Horton

No abstract provided.


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tailoring Materials Behavior Using Geometry.Pdf, Hessein Ali, Hossein Ebrahimi, Ranajay Ghosh Dec 2018

Tailoring Materials Behavior Using Geometry.Pdf, Hessein Ali, Hossein Ebrahimi, Ranajay Ghosh

Hossein Ebrahimi

Many applications require materials whose response can be tuned such as morphing wings for super maneuverable vehicles, soft robotics and space structures. Nature achieves this objective using external dermal features – skin, furs, tooth, feathers. These nonlinearities are generated using the geometry and topology of the scales. The scales provide distinct structural advantages such as protection and tailorable response from scales contact. Scales also aid in highly dynamic life functions – such as locomotion, anti anti-fouling, flapping flights, swimming. Material to structural correlations are highly nonlinear due to scale topology. We aim to reveal structure structure-propertyproperty-architecture correlations for automated 3D …