Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Additive Manufacturing Of Composites For Sensing And Harsh Environments Application, Md Sahid Hassan Dec 2023

Additive Manufacturing Of Composites For Sensing And Harsh Environments Application, Md Sahid Hassan

Open Access Theses & Dissertations

Composite materials are made by combining two or more materials, such as fibers and resins to create a material system that has improved mechanical and physical properties compared to its individual components. The use of 3D printing technology in composite manufacturing allows for the creation of complex and custom shapes with precise control over the placement of the materials. This makes it possible to create composite parts with enhanced performance characteristics and reduced weight. The work presented in this dissertation lies in the design and development of highly flexible impact propagation sensor through material extrusion 3D printing technique. By using …


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Northrop Grumman Collaboration Project, Nikkia Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake Jul 2023

Northrop Grumman Collaboration Project, Nikkia Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake

Mechanical Engineering

The Northrop Grumman Collaboration Project (NGCP) is a collaborative club project sponsored by Northrop Grumman for the students of Cal Poly San Luis Obispo (CPSLO) and Cal Poly Pomona (CPP) to create a fleet of vehicles to aid in the simulated rescue of stranded hiker. The CPSLO club is responsible for delivering an autonomous flight vehicle that can suppress a fire and retrieve a payload. Mechanical Design Team of the CPSLO team was responsible for the design of the frame, electronics housing, and payload and fire suppression systems.


Engineered Material Systems For Mimicking Tissue And Disease, Margrethe Ruding May 2023

Engineered Material Systems For Mimicking Tissue And Disease, Margrethe Ruding

McKelvey School of Engineering Theses & Dissertations

This thesis comprises two studies involving design and application of soft material systems. The goal of the first study was to design, fabricate, and characterize hydrogel lattice structures with consistent, controllable, anisotropic mechanical properties. Lattices, based on four types of unit cells (cubic, diamond, vintile, and Weaire-Phelan), were printed using stereolithography (SLA) of polyethylene glycol diacrylate (PEGDA). In order to create structural anisotropy in the lattices, unit cell design files were scaled in one direction by a factor of two in each layer and then printed. The mechanical properties of the scaled lattices were measured in shear and compression and …


Nasa Student Launch Payload Deployment, Kallysta Ray Jan 2023

Nasa Student Launch Payload Deployment, Kallysta Ray

All Undergraduate Projects

For the NASA Student Launch Competition, a deployment system was created to deploy the payload of the rocket. To accomplish this the deployment system was designed, analyzed, manufactured, and tested to meet the requirements from the NASA Competition. The requirements included deployment of the payload as well as staying within 4 pounds. The project requirements were researched and each of the proposed components had analyses completed. The analyses included weight calculations, stress, and deflection analyses using statics, mechanics of materials, and dynamics. There were many discussions throughout the project between the teammates to ensure all components of the payload and …


Radio-Controlled Baja Car, Jaxx Brown Jan 2023

Radio-Controlled Baja Car, Jaxx Brown

All Undergraduate Projects

The Central Washington University RC Baja competition tests students’ skills in engineering in a matter of ability to design, construct and test an RC car. The objective of this senior project is to manufacture efficient suspension and steering systems for an RC vehicle and compete at the end of the school year against other students’ vehicles. Two races will be conducted during the competition, the RC vehicle will compete in a slalom-and-sprint and a Baja. Using more than one manufacturing method and material was expected of students to create the steering and suspension systems. Through CAD software and 3D printers …


Anisotropic Material Behavior Of 3d Printed Fiber Composites, Jordan Garcia Jan 2023

Anisotropic Material Behavior Of 3d Printed Fiber Composites, Jordan Garcia

Theses and Dissertations--Mechanical Engineering

Literature has shown that 3D printed composites may have highly anisotropic mechanical properties due to variation in microstructure as a result of filament deposition process. Laminate composite theory, which is already used for composite products, has been proposed as an effective method for quantifying these mechanical characteristics. Starting with the analysis of comparing the printing orientation of premanufactured carbon fiber reinforced filament, the mechanical properties of 3D printed objects were examined. The mechanical properties changed not only as a result of machine choice, but how the sample is oriented along the printing bed. The analysis continued with looking at the …


Northrop Grumman Collaboration Project, Nikkia Rae Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake Jan 2023

Northrop Grumman Collaboration Project, Nikkia Rae Psomas-Sheridan, Santiago Robles, Ben Elkayam, Benjamin Ulfhake

Mechanical Engineering

The Northrop Grumman Collaboration Project (NGCP) is a collaborative club project sponsored by Northrop Grumman for the students of Cal Poly San Luis Obispo (CPSLO) and Cal Poly Pomona (CPP) to create a fleet of vehicles to aid in the simulated rescue of stranded hiker. The CPSLO club is responsible for delivering an autonomous flight vehicle that can suppress a fire and retrieve a payload. Mechanical Design Team of the CPSLO team was responsible for the design of the frame, electronics housing, and payload and fire suppression systems.


Effect Of Size And Shape Parameters On Microstructure Of Additively Manufactured Inconel 718, Showmik Ahsan Jan 2023

Effect Of Size And Shape Parameters On Microstructure Of Additively Manufactured Inconel 718, Showmik Ahsan

Browse all Theses and Dissertations

Additive Manufacturing (AM) methods are promising in applications where complex part geometries, exotic materials and small lot sizes are required. Aerospace manufacturing stands to use AM methods extensively in the future, and frequently requires temperature- and corrosion-resistant alloy materials such as Inconel 718. However, the microstructural evolution of Inconel 718 during additive manufacturing is poorly understood and depends on part size and shape. We studied the microstructure of Inconel 718 parts manufactured by Laser Powder Bed Fusion in order to further elucidate these dependencies. Microstructural analysis, SEM imaging, EBSD scans and Microhardness testing were performed.