Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Double-Sided Corrugated Composite Tube And Axle Protective Mechanism For Railway Vehicles, Hozhabr Mozafari Nov 2019

Double-Sided Corrugated Composite Tube And Axle Protective Mechanism For Railway Vehicles, Hozhabr Mozafari

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Structural elements in transportation vehicles are exposed to different types of dynamic loadings and impact scenarios. Protecting passengers against injury and providing mechanisms to avoid impact induced damages to the critical components are the two hot topics in crashworthiness engineering. The presented research work includes two parts. The first part is about designing a novel double-sided composite corrugated tube that can be implemented in front chassis rail of ground vehicles to improve their crashworthiness against collision and car accidents. To maximize the controllable energy absorption of corrugation troughs as observed in the single sided corrugated (SSC) tube, we proposed and …


Synthesis Of Multiwall Α-Fe2o3 Hollow Fibers Via A Centrifugal Spinning Technique, Mandana Akia, K. A. Mkhoyan, Karen Lozano Sep 2019

Synthesis Of Multiwall Α-Fe2o3 Hollow Fibers Via A Centrifugal Spinning Technique, Mandana Akia, K. A. Mkhoyan, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

Highlights

  • Hollow hematite (α-Fe2O3) fine fibers were fabricated via a simple, flexible, and scalable technique.

  • An aqueous solution with iron precursor/polymer was used in the centrifugal spinning process

  • Developed fibers show average wall thickness of 55 ± 15 nm and outer fiber diameter of 852 ± 86 nm

Abstract

Hollow hematite (α-Fe2O3) fine fibers with multiwall structure were synthesized by utilizing a centrifugal spinning technique. Aqueous solutions of polyvinyl pyrrolidone and iron (III) nitrate nonahydrate were prepared and spun into fibers. The precursor fibers were heat treated at 650 °C to form iron oxide fibers. Scanning electron micrographs revealed the …


Resistance To Helium Bubble Formation In Amorphous Sioc/Crystalline Fe Nanocomposite, Qing Su, Tianyao Wang, Jonathan Gigax, Lin Shao, Michael Nastasi Jan 2019

Resistance To Helium Bubble Formation In Amorphous Sioc/Crystalline Fe Nanocomposite, Qing Su, Tianyao Wang, Jonathan Gigax, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

The management of radiation defects and insoluble He atoms represent key challenges for structural materials in existing fission reactors and advanced reactor systems. To examine how crystalline/amorphous interface, together with the amorphous constituents affects radiation tolerance and He management, we studied helium bubble formation in helium ion implanted amorphous silicon oxycarbide (SiOC) and crystalline Fe composites by transmission electron microscopy (TEM). The SiOC/Fe composites were grown via magnetron sputtering with controlled length scale on a surface oxidized Si (100) substrate. These composites were subjected to 50 keV He+ implantation with ion doses chosen to produce a 5 at% peak He …