Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Series

University of South Carolina

Nanostructured materials

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiro, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu Apr 2004

Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiro, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Noble metal impregnation has resulted in the inclusion of metal nanostructures within the SBA-15 mesoporous silica hexagonal pores (from nanoclusters to nanowires). A bright-field transmission electron microscopy three-dimensional reconstruction is proposed to analyze the localization of nanostructures within the pores of mesoporous nanotemplates. The method allows corroboration whether the nanostructures are synthesized inside the pores or they are synthesized alternatively on the nanotemplate aggregates exterior surface.


Synthesis Of Tin Oxide Nanostructures With Controlled Particle Size Using Mesoporous Frameworks, A. Cabot, J. Arbiol, E. Rossinyol, J. R. Morante, Fanglin Chen, Meilin Liu Mar 2004

Synthesis Of Tin Oxide Nanostructures With Controlled Particle Size Using Mesoporous Frameworks, A. Cabot, J. Arbiol, E. Rossinyol, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Tin oxide nanostructures with controlled narrow particle size distribution were synthesized inside silica mesoporous templates. In this way, particle growth was blocked by physically corseting the tin compound inside the silica frameworks, the pore diameter of which determines the final tin oxide crystallite size distribution. Template structures were subsequently eliminated by chemical methods to collect the unsupported semiconductor nanoparticles. Thus obtained tin oxed nanopowders, with particle sizes in the range between 6 and 10 nm, were structurally, chemically, and electically characterized. The results are compared with those obtained from the characterization of larger crystallite materials.


Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiró, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu Jan 2004

Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiró, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Noble metal impregnation has resulted in the inclusion of metal nanostructures within the SBA-15 mesoporous silica hexagonal pores (from nanoclusters to nanowires). A bright-field transmission electron microscopy three-dimensional reconstruction is proposed to analyze the localization of nanostructures within the pores of mesoporous nanotemplates. The method allows corroboration whether the nanostructures are synthesized inside the pores or they are synthesized alternatively on the nanotemplate aggregates exterior surface.


Distributions Of Noble Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu Oct 2002

Distributions Of Noble Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Mesoporous silica nanostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3–5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalytic properties for CO–CH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors.