Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Series

University of South Carolina

Fuel cells

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

High-Throughput 3d Reconstruction Of Stochastic Heterogeneous Microstructures In Energy Storage Materials, Yanxiang Zhang, Mufu Yan, Yanhong Wan, Zhenjun Jiao, Yu Chen, Fanglin Chen, Changrong Xia, Meng Ni Jan 2019

High-Throughput 3d Reconstruction Of Stochastic Heterogeneous Microstructures In Energy Storage Materials, Yanxiang Zhang, Mufu Yan, Yanhong Wan, Zhenjun Jiao, Yu Chen, Fanglin Chen, Changrong Xia, Meng Ni

Faculty Publications

Stochastic heterogeneous microstructures are widely applied in structural and functional materials, playing a crucial role in determining their performance. X-ray tomography and focused ion beam serial sectioning are frequently used methods to reconstruct three-dimensional (3D) microstructures, yet are demanding techniques and are resolution-limited. Here, a high-throughput multi-stage 3D reconstruction method via distance correlation functions is developed using a single representatively large-sized 2D micrograph for stochastic microstructures, and verified by X-ray micro-tomography datasets of isotropic and anisotropic solid oxide fuel cell electrodes. This method provides an economic, easy-to-use and high-throughput approach for reconstructing stochastic heterogeneous microstructures for energy conversion and storage …


Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin Aug 2017

Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin

Faculty Publications

Using static and dynamic density functional theory (DFT) methods with a cluster model of [(Li2CO3)8H]+, the mechanism and kinetics of proton transfer in lithium molten carbonate (MC) were investigated. The migration of proton prefers an inter-carbonate pathway with an energy barrier of 8.0 kcal/mol at the B3LYP/6-31 G(d,p) level, which is in good agreement with the value of 7.6 kcal/mol and 7.5 kcal/mol from experiment and FPMD simulation, respectively. At transition state (TS), a linkage of O–H–O involving O 2p and H 1 s orbitals is formed between two carbonate ions. The calculated trajectory of H indicates that proton has …


H3Po4-Imbibed Three-Dimensional Polyacrylamide/Polyacrylamide Hydrogel As A High-Temperature Proton Exchange Membrane With Excellent Acid Retention, Qunwei Tang, Guoging Qian, Kevin Huang Aug 2012

H3Po4-Imbibed Three-Dimensional Polyacrylamide/Polyacrylamide Hydrogel As A High-Temperature Proton Exchange Membrane With Excellent Acid Retention, Qunwei Tang, Guoging Qian, Kevin Huang

Faculty Publications

We herein report the use of polyacrylamide/polyacrylamide interpenetrating polymer network (PAM/PAM IPN) hydrogel as a matrix to imbibe proton conducting H3PO4, forming a robust proton exchange membrane (PEM) suitable for high-temperature PEM fuel cells by combining excellent acid retention, simple synthesis, and low cost. Its extraordinary ability to absorb large quantity of aqueous solution is fully utilized to achieve high H3PO4 loading, showing a proton conductivity of 0.0833 S cm−1 at 183 °C in dry air. The synthesized membrane also shows excellent acid retention even under mechanical load and high humidity. These profound …


Mechanics Of Composite Materials In Fuel Cell Systems, Kenneth Reifsnider, Xinyu Huang, G. Ju, Matthew Feshler, K. An Jan 2005

Mechanics Of Composite Materials In Fuel Cell Systems, Kenneth Reifsnider, Xinyu Huang, G. Ju, Matthew Feshler, K. An

Faculty Publications

The science and technology that are fundamental to the concept of composite materials are also the foundation for the construction and function of fuel cells and fuel cell systems. The present paper outlines this relationship in the context of the physics and chemistry that are enabled by the specific selection and arrangement of constituents of the “functional composite” fuel cell. General principles of operation are described, and fundamental issues are defined that must be addressed by the composites community if the fuel cell science and engineering is to advance. Examples of several types of functional composite fuel cells are presented, …


Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken Oct 1997

Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken

Faculty Publications

The electrode performance of a single solid oxide fuel cell was evaluated using a 500 μm thick La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as the electrolyte membrane. Comparison of La0.6Sr0.4CoO3-δ (LSCo) and La0.9Sr0.1MnO3 (LSM) as cathodes showed LSCo gave an exchange current density two orders of magnitude higher than that of LSM. Comparison of CeO2/Ni and LSGM/Ni as anodes showed a degradation of the latter with time, and studies of the anode‐electrolyte interface and the reactivity of NiO and LSGM suggest better anode …