Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Series

University of South Carolina

Energy storage

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Enhanced Carbon Dioxide Electrolysis At Redox Manipulated Interfaces, Wenyuan Wang, Lizhen Gan, John P. Lemmon, Fanglin Chen, John T. S. Irvine, Kui Xie Apr 2019

Enhanced Carbon Dioxide Electrolysis At Redox Manipulated Interfaces, Wenyuan Wang, Lizhen Gan, John P. Lemmon, Fanglin Chen, John T. S. Irvine, Kui Xie

Faculty Publications

Utilization of carbon dioxide from industrial waste streams offers significant reductions in global carbon dioxide emissions. Solid oxide electrolysis is a highly efficient, high temperature approach that reduces polarization losses and best utilizes process heat; however, the technology is relatively unrefined for currently carbon dioxide electrolysis. In most electrochemical systems, the interface between active components are usually of great importance in determining the performance and lifetime of any energy materials application. Here we report a generic approach of interface engineering to achieve active interfaces at nanoscale by a synergistic control of materials functions and interface architectures. We show that the …


A Novel Intermediate-Temperature All Ceramic Iron–Air Redox Battery: The Effect Of Current Density And Cycle Duration, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Huang May 2014

A Novel Intermediate-Temperature All Ceramic Iron–Air Redox Battery: The Effect Of Current Density And Cycle Duration, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Huang

Faculty Publications

We here report the energy storage characteristics of a new all ceramic iron–air redox battery comprising of a reversible solid oxide fuel cell as the charger/discharger and a Fe–FeOx redox couple as the chemical storage bed. The effects of current density and cycle duration on specific energy and round trip efficiency of the new battery have been systematically studied at 650°C and 550°C. The results explicitly show that current density is the most influential variable on the performance, signifying the importance of improving electrochemical performance of the reversible solid oxide fuel cell.


Enhanced Reversibility And Durability Of A Solid Oxide Fe–Air Redox Battery By Carbothermic Reaction Derived Energy Storage Materials, Xuan Zhao, Xue Li, Yunhui Gong, Kevin Huang Oct 2013

Enhanced Reversibility And Durability Of A Solid Oxide Fe–Air Redox Battery By Carbothermic Reaction Derived Energy Storage Materials, Xuan Zhao, Xue Li, Yunhui Gong, Kevin Huang

Faculty Publications

The recently developed solid oxide metal–air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron–air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.


Cyclic Durability Of A Solid Oxide Fe-Air Redox Battery Operated At 650°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang Aug 2013

Cyclic Durability Of A Solid Oxide Fe-Air Redox Battery Operated At 650°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang

Faculty Publications

The recently developed rechargeable solid oxide metal-air redox battery has shown a great potential for applications in mid- to large-scale stationary energy storage. Cyclic durability is one of the most important requirements for stationary energy storage. In this study, we report the cyclic durability of a solid oxide Fe-air redox battery operated at 650°C. The battery was continuously cycled 100 times under a current density of 50 mA/cm2 with rather flat performance, producing an average specific energy of 760 Wh/kg-Fe at a round-trip efficiency of 55.5%. The post-test examination indicated that the performance losses could arise from the fuel-electrode …


A High Energy Density All Solid-State Tungsten-Air Battery, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Gregory Romito, Kevin Huang Apr 2013

A High Energy Density All Solid-State Tungsten-Air Battery, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Gregory Romito, Kevin Huang

Faculty Publications

An all solid-state tungsten–air battery using solid oxide–ion electrolyte is demonstrated as a new chemistry for advanced energy storage. The unique design of separated energy storage from the electrodes allows for free volume expansion–contraction during electrical cycles and new metal–air chemistry to be explored conveniently.