Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Material State Awareness For Composites Part Ii: Precursor Damage Analysis And Quantification Of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (Quic), Subir Patra, Sourav Banerjee Dec 2017

Material State Awareness For Composites Part Ii: Precursor Damage Analysis And Quantification Of Degraded Material Properties Using Quantitative Ultrasonic Image Correlation (Quic), Subir Patra, Sourav Banerjee

Faculty Publications

Material state awareness of composites using conventional Nondestructive Evaluation (NDE) method is limited by finding the size and the locations of the cracks and the delamination in a composite structure. To aid the progressive failure models using the slow growth criteria, the awareness of the precursor damage state and quantification of the degraded material properties is necessary, which is challenging using the current NDE methods. To quantify the material state, a new offline NDE method is reported herein. The new method named Quantitative Ultrasonic Image Correlation (QUIC) is devised, where the concept of microcontinuum mechanics is hybrid with the experimentally …


Material State Awareness For Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (Cwi), Subir Patra, Sourav Banerjee Dec 2017

Material State Awareness For Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (Cwi), Subir Patra, Sourav Banerjee

Faculty Publications

Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages—for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.—are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100–~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although …


The Aspergillus Flavus Homeobox Gene, Hbx1, Is Required For Development And Aflatoxin Production, Jeffrey W. Cary, Pamela Y. Harris-Coward, Leslie Scharfenstein, Brian M. Mack, Perng-Kuang Chang, Qijian Wei, Matthew Lebar, Carol Carter-Wientjes, Rajtilak Majumdar, Chandrani Mitra, Sourav Banerjee, Anindya Chanda Oct 2017

The Aspergillus Flavus Homeobox Gene, Hbx1, Is Required For Development And Aflatoxin Production, Jeffrey W. Cary, Pamela Y. Harris-Coward, Leslie Scharfenstein, Brian M. Mack, Perng-Kuang Chang, Qijian Wei, Matthew Lebar, Carol Carter-Wientjes, Rajtilak Majumdar, Chandrani Mitra, Sourav Banerjee, Anindya Chanda

Faculty Publications

Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx) genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in …


Multiphysics Simulation Of Low-Amplitude Acoustic Wave Detection By Piezoelectric Wafer Active Sensors Validated By In-Situ Ae-Fatigue Experiment, Yeasin Bhuiyan, Victor Giurgiutiu Aug 2017

Multiphysics Simulation Of Low-Amplitude Acoustic Wave Detection By Piezoelectric Wafer Active Sensors Validated By In-Situ Ae-Fatigue Experiment, Yeasin Bhuiyan, Victor Giurgiutiu

Faculty Publications

Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain …


Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi Aug 2017

Static And Dynamic Strain Monitoring Of Reinforced Concrete Components Through Embedded Carbon Nanotube Cement-Based Sensors, Antonella D’Alessandro, Filippo Ubertini, Enrique García-Macías, Rafael Castro-Triguero, Austin Downey, Simon Laflamme, Andrea Meoni, Annibale Luigi Materazzi

Faculty Publications

The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC) elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i) the repeatability and accuracy of sensors’ behavior …


Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin Aug 2017

Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin

Faculty Publications

Using static and dynamic density functional theory (DFT) methods with a cluster model of [(Li2CO3)8H]+, the mechanism and kinetics of proton transfer in lithium molten carbonate (MC) were investigated. The migration of proton prefers an inter-carbonate pathway with an energy barrier of 8.0 kcal/mol at the B3LYP/6-31 G(d,p) level, which is in good agreement with the value of 7.6 kcal/mol and 7.5 kcal/mol from experiment and FPMD simulation, respectively. At transition state (TS), a linkage of O–H–O involving O 2p and H 1 s orbitals is formed between two carbonate ions. The calculated trajectory of H indicates that proton has …