Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 80

Full-Text Articles in Entire DC Network

Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail Dec 2023

Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail

Theses and Dissertations

Non-enzymatic glucose sensing holds promise to overcome limitations associated with glucose oxidase, such as oxygen dependence and short shelf life. This study explores the potential sensing capabilities of borophene and graphene through direct interaction with various compounds, including β-glucose, uric acid, ascorbic acid, fructose, and acetaminophen. Using Density Functional Theory (DFT), we calculated binding energies and the respective Density of States (DOS) for these adsorbates on both graphene and borophene surfaces. Preliminary results suggest that borophene might exhibit nearly twice the affinity for β-glucose compared to graphene. Moreover, the calculated Density of States reveals distinct distortions in the electronic states …


Enhanced Biofouling Properties Of Polyethersulfone Membranes Using Multi-Functional Thermo-Responsive Polymers For Ultra-Filtration Applications, Homa Ghasemi Dec 2023

Enhanced Biofouling Properties Of Polyethersulfone Membranes Using Multi-Functional Thermo-Responsive Polymers For Ultra-Filtration Applications, Homa Ghasemi

Theses and Dissertations

The accumulation and growth of microorganisms on a membrane surface, known as membrane biofouling, has been a significant issue in the effective use of membrane technology for water and wastewater treatment. To overcome these challenges, this study aimed to modify the surface of a polyethersulfone (PES) membrane through the use of a multi-functionalized thermo-responsive polymer. The primary objectives of chemical treatment on membrane surfaces are to enhance surface hydrophilicity and provide anti-bacterial/biocidal properties.To evaluate the effectiveness of these modifications, the performance of the modified membranes was tested for their ability to resist biofouling through filtration of bovine serum albumin (BSA), …


Design Space Visualization And Exploration For Many Goal Problems Under Uncertainity, Niharika Balaji Dec 2023

Design Space Visualization And Exploration For Many Goal Problems Under Uncertainity, Niharika Balaji

Theses and Dissertations

ABSTRACT

Designing a complex engineered system is challenging due to many conflicting goals, uncertainties, and multiple interactions. Traditional optimization approaches often yield single-point solutions, which may not be suitable for early design stages due to their susceptibility to changes in conditions and uncertainties. To address this challenge, a satisficing approach is employed. This approach enables designers to effectively navigate the design space and identify satisficing solutions that balance conflicting goals in the face of uncertainties and changes in conditions. From a systems design perspective, we view design as an iterative process that involves making informed decisions based on available information …


Underwater Image Enhancement: A Pipeline For Underwater Computer Visions, Humberto Lebron Rivera Dec 2023

Underwater Image Enhancement: A Pipeline For Underwater Computer Visions, Humberto Lebron Rivera

Theses and Dissertations

Ocean exploration has surged in popularity and significance in recent years, including diverse areas like maritime archeology, underwater resources, and submerged structure inspection. The activities mentioned above heavily depend on vision and imagery, a challenge in the unpredictable marine world. This thesis presents a conditional generative adversarial network model for image-to-image translation problems. We designed and trained the model with the end goal of enhancing underwater images. Five metrics were employed for validation to quantify our model’s resulting enhanced images. By doing so, we aim to establish a pipeline that can leverage aerial computer vision algorithms for marine applications.

Our …


Deep Learning And Generative Ai Approaches For Automated Diagnosis And Personalized Treatment: Bridging Machine Learning, Medicine, And Biomechanics In Predicting Tissue Mechanics And Biomaterial Properties., Yasin Shokrollahi Dec 2023

Deep Learning And Generative Ai Approaches For Automated Diagnosis And Personalized Treatment: Bridging Machine Learning, Medicine, And Biomechanics In Predicting Tissue Mechanics And Biomaterial Properties., Yasin Shokrollahi

Theses and Dissertations

Machine learning, particularly deep neural networks, has demonstrated significant potential in predicting high-dimensional tasks across various domains. This work encompasses a detailed review of Generative AI in healthcare and three studies integrating machine learning with finite element analysis for predicting biomechanical behaviors and properties. Initially, we provide a comprehensive overview of Generative AI applications in healthcare, focusing on Transformers and Denoising Diffusion models and suggesting potential research avenues to address existing challenges.

Subsequently, we addressed soccer-related ocular injuries by combining finite element analysis and machine learning to predict retinal mechanics following a soccer ball hit rapidly. The prediction errors are …


Viscosity Of Adsorbent Slurries For Washcoating Applications, Nitish Chauhan Dec 2023

Viscosity Of Adsorbent Slurries For Washcoating Applications, Nitish Chauhan

Theses and Dissertations

The viscosity of adsorbent slurries is pivotal in understanding their rheological behavior, yet, the research on adsorbent slurry viscosity has been limited. This study addresses this gap by analyzing porous and non-porous solutes' behavior in solvents and then applying it to the washcoating adsorbents on ceramic substrates. By examining MIL-101 (Cr), glass beads, silica nanoparticles, and Titania, the study aims to comprehend the viscosity variations of each solute in the solvents, water and ethanol. A key observation from this study was the significant role of wetting in determining viscosity, as initial results found that MIL-101 (Cr) exhibited the highest viscosity …


Path Planning Development Framework For Mobile Robots, Lauren-Ann Elizabeth Graham Dec 2023

Path Planning Development Framework For Mobile Robots, Lauren-Ann Elizabeth Graham

Theses and Dissertations

Planetary exploration relies on methods of path planning to achieve autonomous navigation in hazardous environments. Simulating harsh terrain, real-time varying physics, and robotics applications is vital for testing control algorithms here on Earth. Robotics Operating System (ROS) is a set of software libraries and tools that allow you to build and simulate robotic applications. Utilizing ROS, Gazebo, and Blender, a rough terrain simulation framework is created to explore and compare path planning algorithms using various desired robots and maps. ROS supports multiple path planning algorithms given its open-source abilities. This research focuses on path planning implementation of Proportional-Integral-Derivative (PID) control …


Effects Of Perforations On Internal Cathodic Protection And Recruitment Of Marine Organisms To Steel Pipes, Alexander John Paluzzi Dec 2023

Effects Of Perforations On Internal Cathodic Protection And Recruitment Of Marine Organisms To Steel Pipes, Alexander John Paluzzi

Theses and Dissertations

Steel monopile support structures for offshore wind turbines require protection from corrosion on their external and internal surfaces. Cathodic protection (CP) works effectively to protect the external surfaces of monopiles, but internally, byproducts from aluminum sacrificial anode CP (SACP) and impressed current CP (ICCP) induce acidification that accelerates steel corrosion. This project investigated the effects of perforations on the performance of aluminum SACP and ICCP when used inside of steel pipes. Additionally, marine growth on the external and internal surfaces of the pipes was assessed to determine if CP byproducts affect marine organism development.

Two sealed and two perforated steel …


Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran Dec 2023

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran

Theses and Dissertations

A novel parallelizable probabilistic approach to model eddy currents in AC electromagnets is presented in this research. Consequently, power loss associated with the formation of these eddy currents is estimated and validated using experimental data. Furthermore, predicting the effect of ferromagnetic alternating field enhancement on power loss in the source excitation winding has been an active area of research. Unlike a stationary field, an alternating sinusoidal field diffuses partially into the ferromagnetic material leading to a predictably sub-optimal field enhancement. To model these physics, finite element techniques employ nonlinear iterative solvers which are time consuming. A novel method is developed …


Project Thetis: A Low-Cost, Low-Profile Inertial Data Logger, Braidan Duffy Dec 2023

Project Thetis: A Low-Cost, Low-Profile Inertial Data Logger, Braidan Duffy

Theses and Dissertations

This thesis details the design, testing, calibration, and verification of a nine degree of freedom inertial measurement data logger for use with floating bodies. The instrument was conceived to address limitations of equipment used in classes within the Ocean Engineering department at Florida Institute of Technology. By meeting with several stakeholders and end users, a series of stakeholder requirements, capabilities, and component-level requirements were de- veloped that informed the design constraints. There were several hardware iterations of the board, culminating in Revision F5 which was extensively tested and proven. The design was inspected after testing concluded to determine which capabilities …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Laser Assisted Direct Writing Of Liquid Metal For Microprinting Applications, Olga Vargas Cruz Dec 2023

Laser Assisted Direct Writing Of Liquid Metal For Microprinting Applications, Olga Vargas Cruz

Theses and Dissertations

This paper presents a research study for potential printing of a Liquid Metal (LM) Eutectic Gallium Indium alloy (EGaIn) through the applications of the innovative additive manufacturing technology LIFT (Laser Induced Forward Transfer). LIFT is a precise printing technology that allows to create small, detailed printing. The liquid metal in study, EGaIn, has demonstrated great potential for microelectronics applications due to its minimum toxicity and high conductivity. Throughout this research different printing parameters are studied to comprehend the behavior of EGaIn printing with LIFT technique, these include laser energy, laser pulse, receiver material substrate, donor layer thickness, and …


Process-Structure-Property Relationships Of Nanofibers For Biomedical Applications, Dipasree Bhowmick Dec 2023

Process-Structure-Property Relationships Of Nanofibers For Biomedical Applications, Dipasree Bhowmick

Theses and Dissertations

This thesis explores the fabrication, characterization, and applications of nanofiber membranes utilizing Forcespinning® technology. Two distinct nanofiber systems were developed and evaluated, one focusing on pH-responsive Eudragit-baicalin loaded nanofibrous membranes for wound healing and the second one on thermo-responsive nanofiber-hydrogel (PNIPAAm) systems for biosensing applications, specifically dopamine detection. In the first project, nanofiber membranes loaded with Eudragit and baicalin demonstrated superior antibacterial properties against both gram-negative (E. coli) and gram-positive (B. meg) bacteria. Additionally, these membranes exhibited antioxidant properties and enhanced cell proliferation of 3TT cells, making them promising candidates for wound healing dressings. In the second project, a …


Human-Centric Smart Cities: A Digital Twin-Oriented Design Of Interactive Autonomous Vehicles, Oscar G. De Leon-Vazquez Dec 2023

Human-Centric Smart Cities: A Digital Twin-Oriented Design Of Interactive Autonomous Vehicles, Oscar G. De Leon-Vazquez

Theses and Dissertations

Autonomous vehicle (AV) technology is introduced as a solution to improve transportation safety by eliminating traffic accidents caused by human error, which is the leading cause of 90% of accidents. One key feature of AVs is sensing and perceiving their surrounding environment through processing observations collected from the environment. The perception system is essential for an AV to make informed decisions and safely navigate the environment. This study presents an image semantic segmentation algorithm developed in the area of computer vision to improve AV perception. The U-Net-based algorithm is trained and validated using a synthetically generated dataset in a simulation …


Particle-Free High Spatial Resolution Velocimetry For Slip Flow Detection, Malhar Prasad Joshi Oct 2023

Particle-Free High Spatial Resolution Velocimetry For Slip Flow Detection, Malhar Prasad Joshi

Theses and Dissertations

Microfluidic systems have a wide range of applications, including biomedical devices, lab-on-a-chip technologies, and aerospace propulsion. Understanding and quantifying the slip flow phenomenon in these microscale and nanoscale channels is of paramount importance for precise control and optimization of fluidic processes. Our study presents a novel approach to directly measure the velocities in a microchannel using Laser Induced Fluorescence Photobleaching Anemometer (LIFPA) and Travel Time After Photobleaching Velocimetry (TTAPV). In this experimental study, microchannels with micrometer dimensions were used, and slip flow conditions controlled. The LIFPA-TTAPV approach was applied to measure slip velocities in the near wall regime, providing accurate …


Water Quality Monitoring And Mapping Using Rapidly Deployable Sensor Nodes, Mohamed Abdelwahab Oct 2023

Water Quality Monitoring And Mapping Using Rapidly Deployable Sensor Nodes, Mohamed Abdelwahab

Theses and Dissertations

Efficient and continuous monitoring of water quality parameters plays a pivotal role in responding to pollution incidents and ensuring the safety of both human consumption and ecological resources. This research introduces an affordable and dependable in-situ water quality sensor package designed for seamless continuous monitoring, providing essential data to facilitate informed decision-making in water resource management. The sensor package enables comprehensive on-site assessment of key water characteristics, including pH, temperature, turbidity (measured in NTU), and total dissolved solids (TDS, measured in ppm). Spatial interpolation techniques, specifically Kriging, are employed to extrapolate variable values at unobserved locations based on nearby measurements. …


Acoustic-Emission Monitoring Of Lap Joint Fatigue Cracks, Siddharth Kannan Oct 2023

Acoustic-Emission Monitoring Of Lap Joint Fatigue Cracks, Siddharth Kannan

Theses and Dissertations

Structural integrity is a pivotal consideration in the field of engineering applications, and understanding the behavior of materials and joints under various loading conditions is critical. This thesis presents a novel approach to detect and analyze fatigue induced cracks in various test specimens using Piezoelectric Wafer Active Sensors. This approach is widely used in Structural Health Monitoring applications involving acoustic emissions that can be captured using PWAS which in turn gives the surface response to applied stresses. The ultimate goal of the research is to identify the length of a fatigue crack originating from lap joints and to develop a …


Synthesis And Characterization Of Electrode Materials Of Solid Oxide Cells For Energy Conversion And Storage, Haixia Li Oct 2023

Synthesis And Characterization Of Electrode Materials Of Solid Oxide Cells For Energy Conversion And Storage, Haixia Li

Theses and Dissertations

Solid oxide cells (SOCs) can directly convert chemical energy to electricity in the fuel cell mode and store electricity to chemicals in the electrolysis mode. However, there are still critical barriers, such as energy efficiency and durability, for developing and commercializing SOCs. This dissertation aims to design electrode materials and optimize the cell fabrication process to address the critical barriers for SOCs in energy conversion and energy storage applications. Therefore, one primary focus of the dissertation is to develop robust fuel electrode material for solid oxide fuel cells (SOFCs) with improved sulfur tolerance. In addition, the design of novel fuel …


Wide View And Line Filter For Enhanced Image Gradient Computation And Edge Determination, Luke Bagan Oct 2023

Wide View And Line Filter For Enhanced Image Gradient Computation And Edge Determination, Luke Bagan

Theses and Dissertations

Edge determination is a challenging yet crucial step in the object detection process for images. It is the first in a multi-step process, serving as the foundation for all subsequent operations. Its accuracy directly affects the success of any future processing techniques and final detection. The challenge of edge detection is derived from a variety of factors, including noise, image sharpness, orientation, empirical parameters, and computational complexity. Many traditional kernel-based operators excel at tackling one of these problems, but trade off their ability to handle others. For example, the popular Sobel operator uses a horizontal and vertical constant high-pass kernel. …


Material Development And Optimization Of Solid Oxide Cells For Energy Conversion And Storage, Wanhua Wang Oct 2023

Material Development And Optimization Of Solid Oxide Cells For Energy Conversion And Storage, Wanhua Wang

Theses and Dissertations

There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cell (SOC) has been considered as one of the most promising technologies since it can convert chemical energy to electricity in the fuel cell mode and store electricity to chemicals in the electrolysis mode. The present work is devoted to materials development in both oxygen ion conducting SOC (O-SOC) and proton conducting SOC (P-SOC). The objective of this study is to design and optimize the electrolyte and electrode materials for SOC in energy conversion and energy storage applications. One major …


A Globalized Optimization Schema For Automated Fiber Placement Processing Parameters, Matthew John Godbold Oct 2023

A Globalized Optimization Schema For Automated Fiber Placement Processing Parameters, Matthew John Godbold

Theses and Dissertations

Automated Fiber Placement is an advanced manufacturing technique for industrial-scale composite structures. Advanced robotics coupled with composite manufacturing results in faster and more consistent results than previously obtained through hand layup. The complexity and interconnectedness of the automated fiber placement process provides a difficult challenge for traditional modeling techniques. Modeling within automated fiber placement currently utilizes physics-based modeling to inform the translation of a design to a manufacturing plan. The intricacy of the automated fiber placement process dictates that attempts at modeling or optimizing these processes are often limited in their scope. Physics-based modeling for manufacturing typically involves numerous interacting …


Studies Of Damage Tolerance In Automated Fiber Placement Based Heterogeneous Meso-Architectured Carbon/ Epoxy Composite Laminates., Karan Kodagali Oct 2023

Studies Of Damage Tolerance In Automated Fiber Placement Based Heterogeneous Meso-Architectured Carbon/ Epoxy Composite Laminates., Karan Kodagali

Theses and Dissertations

Traditional unidirectional (UD) carbon fiber-reinforced polymer matrix composites manufactured via automated fiber placement (AFP) are widely used in aerospace structures. While heterogeneous at the micro-scale, these materials are homogeneous at the meso-scale (ply-scale). The major limitation is its limited toughness, poor damage tolerance/impact resistance capability and the inability to sufficiently redistribute stresses, resulting in strength-toughness tradeoffs, making them susceptible to impact damage. From previous studies, there is an understanding that fiber architecture has a first order effect on the damage tolerance. Introducing new discontinuous/heterogeneous meso-scale architectures, through an optimal merger of material and structure, can result in unprecedented property improvements …


Rapid Prediction Of Phonon Density Of States By Graph Neural Network And High-Throughput Screening Of Candidate Substrates For Wide Bandgap Electronic Cooling, Mohammed Saif Ali Al-Fahdi Oct 2023

Rapid Prediction Of Phonon Density Of States By Graph Neural Network And High-Throughput Screening Of Candidate Substrates For Wide Bandgap Electronic Cooling, Mohammed Saif Ali Al-Fahdi

Theses and Dissertations

Machine learning has demonstrated superior performance in predicting vast materials properties. However, predicting a continuous material property such as phonon density of states (DOS) is more challenging for machine learning due to the inherent issues of data smoothing and sensitivity to peak positions. In this work, phonon DOS of 2,931 inorganic cubic structures with 63 unique elements from the Open Quantum Materials Database are calculated by high precision density functional theory (DFT). With these training data, we build an equivariant graph neural network (GNN) for total phonon DOS of crystalline materials that utilizes site positions and atomic species as input …


Elastic Sensing Skin For Monitoring Of Concrete Structures, Emmanuel Abiodun Ogunniyi Oct 2023

Elastic Sensing Skin For Monitoring Of Concrete Structures, Emmanuel Abiodun Ogunniyi

Theses and Dissertations

Soft elastomeric capacitors (SECs) are emerging as potential low-cost solutions for monitoring cracks and strains in concrete infrastructure, a crucial aspect of structural health monitoring. Effective long-term monitoring of civil infrastructure can reduce the risk of structural failures and potentially reduce the cost and frequency of inspections. However, deploying structural health monitoring (SHM) technologies for bridge monitoring is expensive, especially long-term, due to the density of sensors required to detect, localize, and quantify cracks. Previous research on soft elastomeric capacitors (SEC) has shown their viability for low-cost monitoring of cracks in transportation infrastructure. However, when deployed on concrete for strain …


Real-Time Edge Computing For Autonomous Systems, Junlin Ou Oct 2023

Real-Time Edge Computing For Autonomous Systems, Junlin Ou

Theses and Dissertations

This research presents systematic studies and algorithmic and hardware development to enable real-time edge computing for autonomous systems, in particular, for robot path planning and localization applications. First, a low-cost, indoor, multi-camera positioning system is proposed to localize ground robots using the ArUco marker. In this system, the normalized coordinates of the marker processed by OpenCV are utilized to calculate the camera coordinates. Data-driven models are developed to establish a mapping relationship between the camera coordinates and the world coordinates of the marker. Fifty data pairs of the camera and world coordinate systems within one camera view (150 pairs in …


Evaluation Of Digital Twin Approaches For Thermal Modeling And Energy Optimization For Existing Buildings, Jason Bastie Muermann Sep 2023

Evaluation Of Digital Twin Approaches For Thermal Modeling And Energy Optimization For Existing Buildings, Jason Bastie Muermann

Theses and Dissertations

Residential, commercial, and industrial building sectors in the United States were responsible for 42% of the nation’s consumption of 100.2 quadrillion BTUs of energy in 2019 [1]. 80% of the nation’s energy is sourced from fossil fuels, including coal, natural gas, and petroleum. Fossil fuels are known contributors to carbon emissions and climate change, making energy reduction vital. Consequently, New Jersey Department of Military and Veterans Affairs (NJDMAVA) is tasked with evaluating energy consumption and efficiency in all New Jersey Army National Guard (NJARNG) facilities, as mandated by TAG Policy Letter 18-5, Executive Order 13990, and the Energy Independence and …


Multi-Order Modeling Of Linear Magnetic Motor System, Ming-Jen Chen Aug 2023

Multi-Order Modeling Of Linear Magnetic Motor System, Ming-Jen Chen

Theses and Dissertations

Numerical simulations have been proven to be a powerful tool for predicting, testing, and validating the capabilities of new designs. However, given the high demand for simulating extremely complicated geometries and nonlinear physical phenomena, simulations can often be significantly time consuming. Consequently, the development of high-precision reduced-order models becomes indispensable to reduce computational time. In this study, we simplified and characterized an industrial motion system based on linear magnetic motor technology using accurate full 3-D numerical model. The system behavior was explored through various scenarios, including extreme conditions, to gain a deeper understanding of its thermal behavior during operation. The …


Dendrite Growth Suppression And In-Situ Surface Observation Of Lithium Battery Under An Optical Microscope, Tianyao Ding Aug 2023

Dendrite Growth Suppression And In-Situ Surface Observation Of Lithium Battery Under An Optical Microscope, Tianyao Ding

Theses and Dissertations

Dendrite growth is a major obstacle to the commercialization of Li metal batteries. A dendrite formed on a Li anode can cause thermal run-aways and permanent capacity loss. An in-situ optical techniques is considered as one of the major methods to study the dendrites growth behaviors and morphologies real-time. A home-designed in-situ optical cell with a digital optical microscope was used to investigate the behavior of Li deposition on a metallic Li electrode under different electrochemical operation conditions. The impacts of electrolytes, additives and cycling conditions on the dendrite formation were investigated. Guiding by the in-situ optical observation results, polycyclic …


Developing Control System For Manufacturing Processes, Md Shahriar Forhad Aug 2023

Developing Control System For Manufacturing Processes, Md Shahriar Forhad

Theses and Dissertations

Process control has been a critical component in today's manufacturing industry. Industrialists nowadays want reliable control to assure precision manufacturing. Modern control systems must be more dynamic, so that any needed modifications may be made quickly to accomplish the desired product change. For innovative research and development, system customization is critical to ensure freedom for experimental works. In addition, full control of manufacturing systems is necessary to realize and implement Industry 4.0. Often, it is difficult to achieve such control due to limited access to proprietary equipment. To this end, this thesis focuses on developing a custom control platform for …


Two-Dimensional Nanomaterials And Nanocomposites For Sensing, Separation, And Energy Applications, Md Ashiqur Rahman Aug 2023

Two-Dimensional Nanomaterials And Nanocomposites For Sensing, Separation, And Energy Applications, Md Ashiqur Rahman

Theses and Dissertations

Two-dimension (2D) nanomaterials have gained popularity for the last few decades due to their excellent mechanical, electrical and thermal properties. These unique properties of 2D nanomaterials can be exploited in various applications specially in sensor, energy, and separation devices. In this study, the sensing and energy generation performance of PVDF/PAni fiber mat systems made by the forcespinning method with and without graphene coating. The graphene-coated nanocomposites show an average output voltage of 75 mV (peak-to-peak) which is 300% higher compared to bare fiber mats and an output current of 24 mA (peak-to-peak) by gentle finger pressing. Moreover, the graphene-coated PVDF/PAni …