Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Entire DC Network

A Parametric Computational Fluid Dynamics (Cfd) Study Of In-Line Horizontal Axis Wind Turbines (Hawts) With Yaw, North Alyster Yates Dec 2021

A Parametric Computational Fluid Dynamics (Cfd) Study Of In-Line Horizontal Axis Wind Turbines (Hawts) With Yaw, North Alyster Yates

Masters Theses

Because of the constant use of non-renewable fossil fuels, and the enormous impact they have on global warming and pollution, there has been a push to use more eco-friendly and renewable sources for power. One such form is wind power via turbines. The most common form, Horizontal Axis Wind Turbines (HAWTs), can generate massive amounts of power. However, they also have a serious flaw in their design. As the wind passes through the swept area of the blades and past the tower, it creates massive disturbances in the airflow. These disturbances are called a ‘wake’. When trying to create a …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Standardized 1x6u Cubesat Structure Design, Maximilian H. Brummel Nov 2021

Standardized 1x6u Cubesat Structure Design, Maximilian H. Brummel

Masters Theses

A CubeSat is a small satellite composed of one or more 10cm x 10cm x ~10cm cubes. Sometimes referred to as a “U” as in unit, the cubes can be combined in configurations of 2U, 3U, 6U, and more. CubeSats provide many advantages that larger satellites cannot offer. They are relatively inexpensive and can be fabricated much faster. Small-scale projects that require a fast timeline from conception up to completion are perfect for CubeSats. Furthermore, educational programs use CubeSat projects to teach and prepare students for the satellite industry. Popular configurations for CubeSat are 1U, 3U and 6U where the …


Design And Testing Of A Foundation Raised Oscillating Surge Wave Energy Converter, Jacob R. Davis Oct 2021

Design And Testing Of A Foundation Raised Oscillating Surge Wave Energy Converter, Jacob R. Davis

Masters Theses

Our oceans contain tremendous resource potential in the form of mechanical energy. With the ability to capture and convert the energy carried in surface waves into usable electricity, wave energy converters (WECs) have been a long-held aspiration in ocean renewable energy. One of the most popular wave energy design concepts is the Oscillating Surge Wave Energy Converter (OSWEC). True to their namesake, OSWECs extract energy from the surge force induced by incident waves. In their most basic form, OSWECs are analogous to a bottom-hinged paddle which pitches fore and aft in the direction of wave motion. Most commonly, OSWECs are …


Visuomotor Adaptation During Asymmetric Walking, Charles Napoli Oct 2021

Visuomotor Adaptation During Asymmetric Walking, Charles Napoli

Masters Theses

Necessary for effective ambulation, head stability affords optimal conditions for the perception of visual information during dynamic tasks. This maintenance of head-in-space equilibrium is achieved, in part, by the attenuation of the high frequency impact shock resulting from ground contact. While a great deal of experimentation has been done on the matter during steady state locomotion, little is known about how head stability or dynamic visual acuity is maintained during asymmetric walking.

In this study, fifteen participants were instructed to walk on a split-belt treadmill for ten minutes while verbally reporting the orientation of a randomized Landolt-C optotype that was …


Towards Real-Time Energy Efficiency Analysis Of A Hydraulic System, Montasir Mamun Mithu Aug 2021

Towards Real-Time Energy Efficiency Analysis Of A Hydraulic System, Montasir Mamun Mithu

Masters Theses

The study aims at developing a real-time data analysis system for the energy efficiency study of hydraulic systems. It also aims at implementing automation for hydraulic systems so that energy efficiency can be improved using the real-time approach. This research uses a system-level experimental methodology. A linear push system hydraulic prototype is developed for the study. The prototype contains hydraulic actuator, shock absorber, electronic flow control valve, and electronic sensor. This prototype is used to experiment with different operating conditions to characterize hydraulic system behavior. A real-time data analysis system is developed using LabVIEW and an Open Platform Communication (OPC) …


Effects Of Pillar And Sealing Design On Thermal And Mechanical Performance Of Vacuum Insulated Glazing, Wenyuan Zhu Aug 2021

Effects Of Pillar And Sealing Design On Thermal And Mechanical Performance Of Vacuum Insulated Glazing, Wenyuan Zhu

Masters Theses

Vacuum insulated glazing with a low-emittance coating has a great market potential as an effective transparent insulator. The thermal insulating performance of VIG is determined by its design, including material selection and configuration of different components. Thermal conductance of the vacuum gap, as a transport bottleneck, is one of the primary factors controlling the thermal transport across VIG. In particular, since support pillars and sealings provide the main thermal transport channels across the vacuum gap, increasing the pillar and sealing thermal resistance is a key strategy for effective thermal insulation, while maintaining the vacuum space and mechanical strength of VIG. …


Design And Simulation Of A Supervisory Control System For Hybrid Manufacturing, Michael Buckley Aug 2021

Design And Simulation Of A Supervisory Control System For Hybrid Manufacturing, Michael Buckley

Masters Theses

The research teams of Dr. Bill Hamel, Dr. Bradley Jared and Dr. Tony Schmitz were tasked by the Office of Naval Research to create a hybrid manufacturing process for a reduced scale model of a naval ship propeller. The base structure of the propeller is created using Wire Arc Additive Manufacturing (WAAM), which is then scanned to compare created geometry to desired geometry. The propeller is then machined down to match the desired geometry. This process is iterated upon until the final product meets design tolerances. Due to the complex nature and numerous industrial machines used in the process, it …


Tall Timber In Denver: An Exploration Of New Forms In Large Scale Timber Architecture, Andrew P. Weuling Jul 2021

Tall Timber In Denver: An Exploration Of New Forms In Large Scale Timber Architecture, Andrew P. Weuling

Masters Theses

Wood has been utilized by humans for thousands of years in the construction of our built environment. More recently, our expanded understanding of the material and the advancement of engineered wood have allowed us to use wood like never before. Concrete and steel, however, have emerged as the main materials used in large scale construction in the late 19th and 20th Centuries. As we are battling and searching for solutions to climate change, the importance of wood in large scale construction has increased as not only is its carbon intensity is lower than steel and concrete, but its …


Finite Element Analysis Of Impact And Cohesion Of Cold Sprayed Particles Onto Non-Planar Surfaces, Zhongkui Liu Jul 2021

Finite Element Analysis Of Impact And Cohesion Of Cold Sprayed Particles Onto Non-Planar Surfaces, Zhongkui Liu

Masters Theses

Compared to traditional thermal spray, cold spray as a new emerging surface treatment eliminates or substantially reduces phase transformation of deposited material and reduces coating porosity. Therefore, the appearance of this new type of surface treatment and additive manufacturing process has attracted considerable attention from researchers. In this research, three-dimensional modeling of Al6061-T6 particle impact and cohesion process was simulated by utilizing commercial finite element analysis (FEA) software ABAQUS/Explicit. To guarantee that a stable bonding phenomenon can be realized in the scope of physical validity, a built-in cohesive contact behavior model was implemented in the simulation to understand the bonding …


Design Of A Cable-Driven Manipulator For Large-Scale Additive Manufacturing, Phillip Chesser May 2021

Design Of A Cable-Driven Manipulator For Large-Scale Additive Manufacturing, Phillip Chesser

Masters Theses

Additive manufacturing of concrete is a growing field of research, yet current motion platforms do not offer viable routes towards large scale deployable systems. This thesis presents the design and analysis of a novel cable-driven robot for use in large scale additive manufacturing. The system developed, termed SkyBAAM, is designed to be easily deployable to a construction site for on-site additive manufacturing of buildings and other large structures. The design philosophy behind this system is presented. Analysis of this system first explores the kinematics, and stiffness as a function of cable tension. Analysis of the workspace and singularities is also …


Correlating Fracture Toughness And Surface Roughness For A Ductile Epoxy Adhered To Aluminum Substrates, Kurt Ryan Smith May 2021

Correlating Fracture Toughness And Surface Roughness For A Ductile Epoxy Adhered To Aluminum Substrates, Kurt Ryan Smith

Masters Theses

Adhesively bonded joints are used across multiple disciplines as an efficient and cost effective method for reinforcing, repairing, or creating new structures. Sufficient understanding of the bond line characteristics of the adhesive is necessary to properly design a reliable bonded joint and ensure a long service life. It is well understood that surface preparation has a significant impact on these interface characteristics as a given level of surface roughness achieves mechanical interlocking between the resin and metal and is important to prevent premature interfacial failure [1]. The goal of this study is to characterize the fracture toughness values for an …


Design And Fabrication Of Invar Layup Tool Molds Using Additive And Subtractive Manufacturing, Matthew Lamsey May 2021

Design And Fabrication Of Invar Layup Tool Molds Using Additive And Subtractive Manufacturing, Matthew Lamsey

Masters Theses

The development of novel additive manufacturing technologies, such as Wire Arc Additive Manufacturing (WAAM), has opened the door for the fabrication of complex part geometries that could not be achieved with traditional manufacturing methods. Best practices for designing parts for fabrication with WAAM are still in their infancy. This thesis presents a novel design and fabrication framework for parts created using WAAM, which was realized through the fabrication of two demonstration composite layup tool molds. The framework includes design principles for WAAM, finite element simulation of part performance, metrological analysis of printed preforms, and considerations for closely integrating the WAAM …


Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee May 2021

Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee

Masters Theses

Proposing experimental investigation of spray cooling/heating of a near-isothermal, scalable, efficient, high density, hydro-pneumatic integrated energy storage system; capable of spray cooling/heating during gas compression/expansion and capable of excess heat integration. The invented Ground-Level Integrated Diverse Energy Storage (GLIDES) is an energy storage technology capable of storing energy in high-pressure vessel using hydro-pneumatic concept. Indicated roundtrip efficiencies of 98% can be reached using the proposed technology marking an isothermal compression/expansion energy storage.


Ground Source Heat Pumps: Considerations For Large Facilities In Massachusetts, Eric Wagner Apr 2021

Ground Source Heat Pumps: Considerations For Large Facilities In Massachusetts, Eric Wagner

Masters Theses

There has been a significant increase in the interest and implementations of heat pump systems for HVAC purposes in general and of ground source heat pumps (GSHPs) in particular. Though these systems have existed for decades, primarily in Europe, there has been an upward trend particularly in the United States in recent years. With the world-wide push toward CO2 emissions reduction targets, interest in heat pump systems to reduce CO2 emissions from heating and cooling is likely to only increase in the future. However, more than ever, financial considerations are also key factors in the implementation of any …


Mechanical Design And Analysis: High-Precision Microcontact Printhead For Roll-To-Roll Printing Of Flexible Electronics, Mehdi Riza Apr 2021

Mechanical Design And Analysis: High-Precision Microcontact Printhead For Roll-To-Roll Printing Of Flexible Electronics, Mehdi Riza

Masters Theses

Flexible electronics have demonstrated potential in a wide range of applications including wearable sensors, photovoltaics, medical devices and more, due to their properties of extreme adaptability while also being lightweight and highly robust. The main challenge standing in the way of progress in this field is the difficulty of large-scale manufacturing of these flexible electronics compared to their rigid counterparts. Microcontact printing is a form of soft lithography in which an elastomeric stamp is used to transfer sub-micron scale surface patterns onto a flexible substrate via ink monolayers. The integration of microcontact printing into a roll-to-roll (R2R) system will enable …


Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary Jan 2021

Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary

Masters Theses

“Ceramic On-Demand Extrusion (CODE) is a patented solid freeform fabrication method for manufacturing high-density monolithic ceramic parts. In the past 5-6 years, the technology has been successfully implemented to fabricate alumina and zirconia parts. The mechanical characterizations also show CODE’s high potential in achieving desired structural properties. The present study covers the fabrication of silicon nitride parts by CODE process, which entailed the design of paste formulation for achieving rheology suitable for dimensional control in fabricated parts and determining firing temperature and the content of sintering additives for silicon nitride green bodies fabricated by CODE. The density, hardness, and fracture …


Design And Development Of A Variable Resistance Hand Exerciser Using A Compliant Mechanism, Jyothi Komatireddy Jan 2021

Design And Development Of A Variable Resistance Hand Exerciser Using A Compliant Mechanism, Jyothi Komatireddy

Masters Theses

"Rehabilitation exercise plays a vital role in recovering from an injury or illness condition by improving flexibility and restoring muscle strength. If not done correctly, exercising can cause more damage to the health condition than in healing. Understanding the muscle’s resistance level while performing an exercise helps design the exercising equipment not to overstrain the muscle during operation. This research presents a methodology to develop a variable-resistance hand exerciser by using a compliant cam-follower mechanism. The proposed design comprised a compliant follower and a rigid cam. The rigid cam is synthesized using the human hand force-deflection profile as an input …


Variational Inference For Morphological Modification To 3d Geometry : An Application To The Support Generation For Metal Additive Manufacturing, Mugdha Swanand Joshi Jan 2021

Variational Inference For Morphological Modification To 3d Geometry : An Application To The Support Generation For Metal Additive Manufacturing, Mugdha Swanand Joshi

Masters Theses

"A key issue in metal additive manufacturing (AM) processes is the optimization of support geometry. Correct selection of support strategy can reduce build time, improve surface finish, reduce support removal time, and maximize build success. Strategies used to design support structure are time consuming and need skilled personnel. In this research we have deployed a deep generative model capable of making morphological modifications to the part. However, it is not similar to topology optimization where the aim is to reduce or eliminate support structure. The proposed model can make necessary changes to the part in order to transform it into …


Investigation Of The Sensitivity Of Human Arm To Small Interaction Forces During Physical Human-Robot Interaction (Phri), Fazlur Rashid Jan 2021

Investigation Of The Sensitivity Of Human Arm To Small Interaction Forces During Physical Human-Robot Interaction (Phri), Fazlur Rashid

Masters Theses

“Understanding the human motor control strategy during physical interaction tasks is crucial for developing future robots for physical human-robot interaction (pHRI). Effective pHRI depends on humans communicating their intentions for movement with robots. In physical human-human interaction (pHHI), small interaction forces are known to convey their intent between the partners. It is speculated that small interaction forces contain significant information to convey the movement intention of pHHI. However, the mechanism underlying this interaction strategy is largely unknown. Hence, the aim of this work was to investigate what affects humans’ sensitivity to the interaction forces. The hypothesis was that small interaction …


Research And Development Of A Laser Hot Wire Deposition Process, Christopher Croft Jan 2021

Research And Development Of A Laser Hot Wire Deposition Process, Christopher Croft

Masters Theses

“Laser hot wire directed energy deposition (DED) is an increasingly popular method for improving deposition rates and overall reduction of build times in DED processing. While there is clear benefit, it is important to fully understand the impact of preheating the wire. This work focuses on developing a model that describes bead geometry output using all factors including the wire preheat. The model was fit with over 150 data points that explored a large range of each factor. The resulting model was then leveraged to evaluate a process control variable. The technique chosen used feedback from the hot wire system …


Physics-Based Modeling Of Lithium-Ion Batteries For Control And Estimation Applications, Brody J. C. Riemann Jan 2021

Physics-Based Modeling Of Lithium-Ion Batteries For Control And Estimation Applications, Brody J. C. Riemann

Masters Theses

“Lithium-ion batteries are extensively used in many application areas like consumer electronics, electric vehicles, and microgrids. As the world moves towards further electrification of vehicles and more widespread use of renewable energy sources, the need for large-scale battery storage systems will grow. To effectively replace conventional methods, batteries will need to be charged quickly while accounting for degradation to maximize lifetime. Further, larger batteries require more detailed safety monitoring, which is implemented using a battery management system (BMS). A BMS is responsible for state of charge (SOC) estimation, state of health (SOH) estimation, cell balancing, regulating voltage and current according …