Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Wright State University

2018

Aortic dilation

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

In Vitro Assessment Of The Effects Of Valvular Stenosis On Aorta Hemodynamics And Left Ventricular Function, Ashish Madan Jan 2018

In Vitro Assessment Of The Effects Of Valvular Stenosis On Aorta Hemodynamics And Left Ventricular Function, Ashish Madan

Browse all Theses and Dissertations

Calcific aortic stenosis (CAS) is the most common valvular heart disease and is associated with aortopathy and ventricular dysfunction. Hemodynamic alterations due CAS could affect the aorta lining (endothelium), that is in direct contact with the blood, triggering adverse biological responses that may possibly cause aortic dilation and dissection. Also, CAS could impose excessive ventricular load leading to ventricular wall thickening, thus putting an individual at a higher risk of heart attack or stroke. These pathophysiological effects of CAS are highly dependent on the degree of calcification. However, the impact of CAS development on aorta flow and left ventricular workload …


Design Of A Novel Tissue Culture System To Subject Aortic Tissue To Multidirectional Bicuspid Aortic Valve Wall Shear Stress, Janet Liu Jan 2018

Design Of A Novel Tissue Culture System To Subject Aortic Tissue To Multidirectional Bicuspid Aortic Valve Wall Shear Stress, Janet Liu

Browse all Theses and Dissertations

Blood vessels experience complex hemodynamics marked by three-dimensionality and pulsatility. Arterial endothelial cells interact with the characteristics of the fluid wall shear stress (WSS) to maintain homeostasis or promote disease states. In particular, the bicuspid aortic valve (BAV), a congenital heart valve anatomy consisting of two leaflets instead of three, is associated with aortic complications presumably promoted by hemodynamic abnormalities. While devices have been used to test this hypothesis, their capabilities are limited to the generation of time-varying WSS magnitude in one direction. However, the increased flow helicity generated by BAVs in the aorta is expected to result in increased …