Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

University of South Carolina

Solid oxide fuel cell (SOFC)

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Redox Stable Anodes For Solid Oxide Fuel Cells, Guoliang Xiao, Fanglin Chen Jun 2014

Redox Stable Anodes For Solid Oxide Fuel Cells, Guoliang Xiao, Fanglin Chen

Faculty Publications

Solid oxide fuel cells (SOFCs) can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking) from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as …


Energy Storage Characteristics Of A New Rechargeable Solid Oxide Iron-Air Battery, Xuan Zhao, Nansheng Xu, Xue Li, Yunhui Gong, Kevin Huang Sep 2012

Energy Storage Characteristics Of A New Rechargeable Solid Oxide Iron-Air Battery, Xuan Zhao, Nansheng Xu, Xue Li, Yunhui Gong, Kevin Huang

Faculty Publications

Cost effective and large scale energy storage is critical to renewable energy integration and smart-grid energy infrastructure. Rechargeable batteries have great potential to become a class of cost effective technology suited for large scale energy storage. In this paper, we report the energy storage characteristics of a newly developed rechargeable solid oxide iron–air battery. Investigations of the battery’s performance under various current densities and cycle durations show that iron utilization plays a determining role in storage capacity and round-trip efficiency. Further studies of the battery's cycle life reveal a unique charge-cycle originated degradation mechanism that can be interpreted by a …


Gas-Diffusion Process In A Tubular Cathode Substrate Of A Sofc, Part Ii: Identification Of Gas-Diffusion Process Using Ac Impedance Method, Kevin Huang Apr 2004

Gas-Diffusion Process In A Tubular Cathode Substrate Of A Sofc, Part Ii: Identification Of Gas-Diffusion Process Using Ac Impedance Method, Kevin Huang

Faculty Publications

The effects of cathodic dc bias, bulk pO2, and effective O2 -diffusivity on ac impedance spectra of Siemens Westinghouse Power Corporation’s cathode-supported solid oxide fuel cells were systematically studied over a temperature range of 800 to 1000°C. It was found that the activation process dominated the overall electrode kinetics at 800°C, by which the applied dc bias reduced the electrode resistance considerably. With increasing the temperature to above 900°C, the activation process became effectively activated, leading to a visible arc at the lowest frequency on the impedance spectrum, which is relevant to the pore gas-diffusion process. …


Gas-Diffusion Process In A Tubular Cathode Substrate Of An Sofc, Part I: Theoretical Analysis Of Gas-Diffusion Process Under Cylindrical Coordinate System, Kevin Huang Apr 2004

Gas-Diffusion Process In A Tubular Cathode Substrate Of An Sofc, Part I: Theoretical Analysis Of Gas-Diffusion Process Under Cylindrical Coordinate System, Kevin Huang

Faculty Publications

In this the first part of a two-part paper, the gas-diffusion process through a thick and porous tubular cathode substrate of a solid oxide fuel cell-(SOFC) was theoretically analyzed using classic Fick’s diffusion equation under the cylindrical coordinate system. The effects of current density, temperature, oxygen diffusivity or porosity, wall thickness, and bulk pO2 on the concentration (or pore in this paper) polarization were calculated and are presented graphically. The results clearly show a greater impact on pore polarization by current density, oxygen diffusivity, wall thickness, and bulk pO2, but not by temperature. In addition, …


Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken Oct 1997

Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken

Faculty Publications

The electrode performance of a single solid oxide fuel cell was evaluated using a 500 μm thick La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as the electrolyte membrane. Comparison of La0.6Sr0.4CoO3-δ (LSCo) and La0.9Sr0.1MnO3 (LSM) as cathodes showed LSCo gave an exchange current density two orders of magnitude higher than that of LSM. Comparison of CeO2/Ni and LSGM/Ni as anodes showed a degradation of the latter with time, and studies of the anode‐electrolyte interface and the reactivity of NiO and LSGM suggest better anode …