Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Electroactive Artificial Muscles Based On Functionally Antagonistic Core–Shell Polymer Electrolyte Derived From Ps-B-Pss Block Copolymer, Van Hiep Nguyen, Jaehwan Kim, Rassoul Tabassian, Moumita Kotal, Kiwoo Jun, Jung-Hwan Oh, Ji-Myeong Son, Muhammad Taha Manzoor, Kwang Jin Kim, Il-Kwon Oh Dec 2018

Electroactive Artificial Muscles Based On Functionally Antagonistic Core–Shell Polymer Electrolyte Derived From Ps-B-Pss Block Copolymer, Van Hiep Nguyen, Jaehwan Kim, Rassoul Tabassian, Moumita Kotal, Kiwoo Jun, Jung-Hwan Oh, Ji-Myeong Son, Muhammad Taha Manzoor, Kwang Jin Kim, Il-Kwon Oh

Mechanical Engineering Faculty Research

Electroactive ionic soft actuators, a type of artificial muscles containing a polymer electrolyte membrane sandwiched between two electrodes, have been intensively investigated owing to their potential applications to bioinspired soft robotics, wearable electronics, and active biomedical devices. However, the design and synthesis of an efficient polymer electrolyte suitable for ion migration have been major challenges in developing high-performance ionic soft actuators. Herein, a highly bendable ionic soft actuator based on an unprecedented block copolymer is reported, i.e., polystyrene-b-poly(1-ethyl-3-methylimidazolium-4-styrenesulfonate) (PS-b-PSS-EMIm), with a functionally antagonistic core–shell architecture that is specifically designed as an ionic exchangeable polymer electrolyte. The corresponding actuator shows exceptionally …


First Observation Of P-Odd Gamma Asymmetry In Polarized Neutron Capture On Hydrogen, D. Blyth, J. Fry, N. Fomin, R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, Alex Barzilov, J. D. Bowman, N. Birge, J. R. Calarco, T. E. Chupp, V. Cianciolo, C. E. Coppola, C. B. Crawford, K. Craycraft, D. Evans, C. Fieseler, E. Frlež, I. Garishvili, M. T. W. Gericke, R. C. Gillis, K. B. Grammer, G. L. Greene, J. Hall, J. Hamblen, C. Hayes, E. B. Iverson, M. L. Kabir Dec 2018

First Observation Of P-Odd Gamma Asymmetry In Polarized Neutron Capture On Hydrogen, D. Blyth, J. Fry, N. Fomin, R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, Alex Barzilov, J. D. Bowman, N. Birge, J. R. Calarco, T. E. Chupp, V. Cianciolo, C. E. Coppola, C. B. Crawford, K. Craycraft, D. Evans, C. Fieseler, E. Frlež, I. Garishvili, M. T. W. Gericke, R. C. Gillis, K. B. Grammer, G. L. Greene, J. Hall, J. Hamblen, C. Hayes, E. B. Iverson, M. L. Kabir

Mechanical Engineering Faculty Research

We report the first observation of the parity-violating gamma-ray asymmetry A(gamma)(np) in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A(gamma)(np) isolates the Delta I = 1, S-3(1)-> P-3(1) component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory… See full text for full abstract.


Simulation Of The Oxygen Reduction Reaction (Orr) Inside The Cathode Catalyst Layer (Ccl) Of Proton Exchange Membrane Fuel Cells Using The Kinetic Monte Carlo Method, Baosheng Bai, Yi-Tung Chen Sep 2018

Simulation Of The Oxygen Reduction Reaction (Orr) Inside The Cathode Catalyst Layer (Ccl) Of Proton Exchange Membrane Fuel Cells Using The Kinetic Monte Carlo Method, Baosheng Bai, Yi-Tung Chen

Mechanical Engineering Faculty Research

In this paper, a numerical model of the kinetic Monte Carlo (KMC) method has been developed to study the oxygen reduction reaction (ORR) that occurs inside the cathode catalyst layer (CCL). Firstly, a 3-D model of the CCL that consists of Pt and carbon spheres is built using the sphere packing method; secondly, an efficient procedure of the proton-oxygen reaction process is developed and simulated. In the proton-oxygen reaction process, all of the continuous movements of protons and oxygen are considered. The maximum reaction distance is determined to be 8 Å. The input pressures of protons and oxygen are represented …


Understanding The Thermal Properties Of Precursor-Ionomers To Optimize Fabrication Processes For Ionic Polymer-Metal Composites (Ipmcs), Sarah Trabia, Kisuk Choi, Zakai Olsen, Taeseon Hwang, Jae-Do Nam, Kwang J. Kim Apr 2018

Understanding The Thermal Properties Of Precursor-Ionomers To Optimize Fabrication Processes For Ionic Polymer-Metal Composites (Ipmcs), Sarah Trabia, Kisuk Choi, Zakai Olsen, Taeseon Hwang, Jae-Do Nam, Kwang J. Kim

Mechanical Engineering Faculty Research

Ionic polymer-metal composites (IPMCs) are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets. This is an un-activated form that is able to melt, unlike the activated form. However, there is little study on the thermal characteristics of these precursor ionomers. This lack of knowledge causes issues when trying to fabricate ionomer shapes using methods such as extrusion, hot-pressing, and more recently, injection molding and 3D printing. …


Mechanical Properties And Flame Retardancy Of Surface Modified Magnesium Oxysulfate (5mg(Oh)2·Mgso4·3h2o) Whisker For Polypropylene Composites, Eui-Su Kim, Ye Chan Kim, Jungwoo Park, Youngjun Kim, Sung-Hoon Kim, Kwang Jin Kim, Jonghwan Suhr, Youngkwan Lee, Seong Hoon Lee, Dae-Sik Kim, Soo-Hyun Kim, Ju-Ho Yun, In-Kyung Park, Jae-Do Nam Feb 2018

Mechanical Properties And Flame Retardancy Of Surface Modified Magnesium Oxysulfate (5mg(Oh)2·Mgso4·3h2o) Whisker For Polypropylene Composites, Eui-Su Kim, Ye Chan Kim, Jungwoo Park, Youngjun Kim, Sung-Hoon Kim, Kwang Jin Kim, Jonghwan Suhr, Youngkwan Lee, Seong Hoon Lee, Dae-Sik Kim, Soo-Hyun Kim, Ju-Ho Yun, In-Kyung Park, Jae-Do Nam

Mechanical Engineering Faculty Research

Magnesium oxysulfate (MOS) whisker is considered as a promising inorganic material recently attracting a great attention for being used as a reinforcing filler for polymer composites due to high aspect ratio and extremely-low bulk density. In this study, the MOS was treated with 3-methacryloyloxypropyl-trimethoxy silane (MPS) via sol-gel condensation reactions, which successfully allowed melt mixing with polypropylene (PP) up to 30 wt% of MOS. The tensile strength at yield and modulus of the MOS/PP composites were substantially increased by 50.8% and 362%, respectively, when compared with the pristine PP. As a novel finding, the flame retardancy of MOS was proved …


A Localized Meshless Technique For Generating 3-D Wind Fields, Darrell W. Pepper, Maria Ramos Gonzalez Feb 2018

A Localized Meshless Technique For Generating 3-D Wind Fields, Darrell W. Pepper, Maria Ramos Gonzalez

Mechanical Engineering Faculty Research

A localized meshless method is used to simulate 3-D atmospheric wind fields for wind energy assessment and emergency response. The meshless (or mesh-free) method with radial basis functions (RBFs) alleviates the need to create a mesh required by finite difference, finite volume, and finite element methods. The method produces a fast solution that converges with high accuracy, establishing 3-D wind estimates over complex terrain. The method does not require discretization of the domain or boundary and removes the need for domain integration. The meshless method converges exponentially for smooth boundary shapes and boundary data, and is insensitive to dimensional constraints. …