Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Entire DC Network

Nanotube Film-Enhanced 3-D Photoanode For Application In Microsystems Technology, Fareed Dawan Jan 2013

Nanotube Film-Enhanced 3-D Photoanode For Application In Microsystems Technology, Fareed Dawan

LSU Doctoral Dissertations

Surface area plays an important factor in the energy conversion performance of solar cells. It has also emerged as a critical factor in the evolution of high-performance micro-electro-mechanical systems (MEMS) and multifunctional microstructures most of which will benefit from integrated on-chip solar power. Presented here is the hierarchical fabrication and characterization of TiO2 nanotubes on non-planar 3-dimensional microstructures for enhanced performance of the photoanode in dye-sensitized solar cells (DSSCs). The objective is to increase photoanode performance within a 1 cm2 lateral footprint area by increasing the vertical surface area through the formation of TiO2 nanotubes on 3-D microstructures. In the …


Development Of A Laboratory Scale Reactor Facility To Generate Hydrogen Rich Syngas Via Thermochemical Energy Conversion, Mandeep Sharma Jan 2013

Development Of A Laboratory Scale Reactor Facility To Generate Hydrogen Rich Syngas Via Thermochemical Energy Conversion, Mandeep Sharma

LSU Master's Theses

The thesis provides data needed for development of a conical spouted bed (CSB) reactor for the purpose of producing hydrogen rich synthesis gas (syngas). The syngas has potential to utilize energy more efficiently, eliminate pollutant emissions and significantly cut emissions of greenhouse gases. The development of CSB reactor system involves three phases. The first phase investigates the hydrodynamic behavior of a small, laboratory scale, conical spouted bed (CSB) by considering the effect of specific system parameters (stagnated bed height, particle size and inlet diameter) on minimum spouting velocity (ums)o, stable operating pressure drop (∆Pms) and maximum pressure drop (∆PM). Experimental …


Modeling And Simulation Of Surface Profile Forming Process Of Microlenses And Their Application In Optical Interconnection Devices, Zhengyu Miao Jan 2013

Modeling And Simulation Of Surface Profile Forming Process Of Microlenses And Their Application In Optical Interconnection Devices, Zhengyu Miao

LSU Doctoral Dissertations

Free space micro-optical systems require to integrate microlens array, micromirrors, optical waveguides, beam splitter, etc. on a single substrate. Out-of-plane microlens array fabricated by direct lithography provides pre-alignment during mask fabrication stage and has the advantage of mass manufacturing at low cost. However, this technology requires precise control of the surface profile of microlenses, which is a major technical challenge. The quality control of the surface profile of microlenses limits their applications. In this dissertation, the surface forming process of the out-of-plane microlenses in UV-lithography fabrication was modeled and simulated using a simplified cellular automata model. The microlens array was …


Parametric Optimization Of A Single-Tracked Vehicle, Darrick Jason Berner Jan 2013

Parametric Optimization Of A Single-Tracked Vehicle, Darrick Jason Berner

LSU Master's Theses

ABSTRACT The purpose of a suspension system for a vehicle is to contribute to the handling and assist in isolating the occupants from vibrations due to road irregularities. Generally, these primary functions are often at odds so the goal is to design a suspension system that finds the appropriate compromise. The focus of this thesis is to develop a two degree of freedom model and use parametric analysis to demonstrate an optimization technique by varying several geometric characteristics on a single-track vehicle. Furthermore, a dynamic vibration absorber will be added to the model to demonstrate its effect on the system. …


Multiscale Analysis Of Contact In Smooth And Rough Surfaces: Contact Characteristics And Tribo-Damage, Ali Beheshti Jan 2013

Multiscale Analysis Of Contact In Smooth And Rough Surfaces: Contact Characteristics And Tribo-Damage, Ali Beheshti

LSU Doctoral Dissertations

This dissertation is comprised of two major interrelated foci. The first focus is to investigate the effect of surface roughness on the behavior of dry contacting bodies through both deterministic and statistical approaches. In the current research, different statistical micro-contact models are employed together with the bulk deformation of the bounding solids to predict the characteristics of the dry rough line-contact and elliptical point-contact including the apparent pressure profile, contact dimensions and real area of contact. Further, based on the results of numerical simulations, useful relationships are provided for the contact characteristics. In addition, a robust approach for the deterministic …


Molecular Dynamics Simulation Studies Of Interaction Of Amphiphilic Molecules With Lipid Bilayers, Jieqiong Lin Jan 2013

Molecular Dynamics Simulation Studies Of Interaction Of Amphiphilic Molecules With Lipid Bilayers, Jieqiong Lin

LSU Doctoral Dissertations

We use molecular dynamics simulations to investigate the behavior of various amphiphilic molecules in aqueous solutions in the presence of vitamin E or lipid bilayers. Our research studies focus on two molecular systems. First, we investigate the effect of DMSO on structural properties of DMPC bilayers and calculate bilayers permeability coefficients for both water and DMSO molecules at low DMSO concentration. The simulations show that the increase of DMSO concentration in solution leads to an increase of the permeability of water through the bilayers. The permeability increase might explain the unusual ability of DMSO, even at relatively low concentrations, to …


Polymer-Based Fluidic Devices Integrated With Perforated Micro- And Nanopore Membrane For Study Of Ionic And Dna Transport, Junseo Choi Jan 2013

Polymer-Based Fluidic Devices Integrated With Perforated Micro- And Nanopore Membrane For Study Of Ionic And Dna Transport, Junseo Choi

LSU Doctoral Dissertations

This study aims to develop a process, allowing a low-cost and high-throughput fabrication technique to produce freestanding polymer membranes having perforated micro- and nanopores, and also to design 3D micro/nanofluidic devices with the membrane, enabling a study of ions and DNA transport through nanopores. Technically, we have designed and fabricated high quality silicon stamp. Then, they have been used as molds for modified nanoimprint lithography that takes advantages of a sacrificial layer to obtain freestanding polymer membrane. This technique allows easy fabrication of large area, fully released polymer membranes containing perforated micro- and sub-micropores. The membrane with perforated micropores has …


Synthesis Of Poly(L-Lactic Acid) Scaffolds From Dioxane/Ethanol Using Control Rate Freezing And Study Of Its Microstructural Properties, George Idicula Jan 2013

Synthesis Of Poly(L-Lactic Acid) Scaffolds From Dioxane/Ethanol Using Control Rate Freezing And Study Of Its Microstructural Properties, George Idicula

LSU Master's Theses

Bio-degradable poly (l-lactic acid) (PLLA) scaffolds were prepared by using thermally induced phase separation (TIPS) method. A solution of PLLA-Dioxane was formed by dissolving PLLA in dehydrated 1,4-Dioxane at three wt/vol percentages, specifically 3, 7 and 10%. This PLLA-Dioxane solution was then frozen in borosilicate glass vials (5mL) at three cooling rates (1, 10 and 40 ˚C/min) in a commercially available controlled rate freezer (CRF). The frozen solution was freeze-dried to sublimate the Dioxane. The microstructural properties of the resulting PLLA scaffolds were determined utilizing Scanning Electron Microscopy (SEM) images and uni- axial compressive testing. The relationship between the wt/vol …


Analysis And Optimization Of Film Cooling Effectiveness, Hessam Babaee Jan 2013

Analysis And Optimization Of Film Cooling Effectiveness, Hessam Babaee

LSU Doctoral Dissertations

In the first part, an optimization strategy is described that combines high-fidelity simu- lations with response surface construction, and is applied to pulsed film cooling for turbine blades. The response surface is constructed for the film cooling effectiveness as a function of duty cycle, in the range of DC between 0.05 and 1, and pulsation frequency St in the range of 0.2-2, using a pseudo-spectral projection method. The jet is fully modulated and the blowing ratio, when the jet is on, is 1.5 in all cases. Overall 73 direct numerical sim- ulations (DNS) using spectral element method were performed to …


Metal-Based Microchannel Heat Exchangers : Manufacturing And Heat Transfer Testing, Bin Lu Jan 2013

Metal-Based Microchannel Heat Exchangers : Manufacturing And Heat Transfer Testing, Bin Lu

LSU Doctoral Dissertations

This dissertation focuses on improving the functionality of metal-based microchannel heat exchangers (MHEs), as well as pushing this technology toward real-world applications. Design optimization was carried out on MHEs for performance maximization. Double-layered microchannel layout was experimentally studied, and a significant reduction on liquid flow pressure drop penalty was achieved. Other than water, another commonly-used coolant, ethylene glycol, was applied to MHEs, and flow and heat transfer characteristics were quantified. Transient Liquid Phase (TLP) bonding was used for joining Cu structures. For further understanding of the MHE heat transfer, a detailed examination was carried out on the TLP bonding interface …


A Fluorescent Oil Detection Device, Yuxuan Zhou Jan 2013

A Fluorescent Oil Detection Device, Yuxuan Zhou

LSU Doctoral Dissertations

On April 20th 2010, the largest offshore oil spill in U.S. history happened in the Gulf of Mexico. It is estimated total more than 4 million barrels oil spilled to Gulf of Mexico. More than two million gallons had been used. This had made the threat to coastal and sea ecosystem even greater and long term. Real-time monitoring is also a critical topic for oil spill response. In-situ monitoring devices are needed for rapid collection of real-time data. A new generation of instruments for spilled oil detection is reported in this paper. The main hypothesis in this research is that …


Electric Field Influence On The Combustion Of Fuel Droplets, Solomon Benghan Jan 2013

Electric Field Influence On The Combustion Of Fuel Droplets, Solomon Benghan

LSU Master's Theses

Improving the combustion efficiency of fuels in combustion devices has become imperative in the face of the diminishing rate of the discovery of new energy sources and an ever increasing demand for energy. While there are other ways of improving combustion efficiency, this study investigated the effect of electric field on the combustion of fuel droplets. In order to model the physics of the problem, a mass transfer evaporation model, heat transfer evaporation model and a simple burning droplet model were considered and their result compared to existing result from literature. A burning rate constant of 1.380mm2/s, 14.910mm2/s and 0.612mm2/s …


Characterization And Verification Of A Closed Loop Wind Tunnel With A Linear Cascade And Upstream Wake Generator, Christopher Foreman Jan 2013

Characterization And Verification Of A Closed Loop Wind Tunnel With A Linear Cascade And Upstream Wake Generator, Christopher Foreman

LSU Master's Theses

A closed loop wind tunnel designed to study film cooling was completed in May 2011 along with a removable wake generating device. The test section featured a three blade, four passage linear cascade utilizing the Air Force Office of Scientific Research L1A low pressure turbine blade. The wake generator is unique because its blades are flat plates with round leading and trailing edges instead of circular rods. In this report, the test section of the wind tunnel is characterized and validated through velocity and pressure measurements in the test section. Hot-wire surveys were used to characterize the velocity and turbulence …


Modeling, Numerical Analysis, And Predictions For The Detonation Of Multi-Component Energetic Solids, Michael Wayne Crochet Jan 2013

Modeling, Numerical Analysis, And Predictions For The Detonation Of Multi-Component Energetic Solids, Michael Wayne Crochet

LSU Doctoral Dissertations

Metal powders are often used as an additive to conventional high explosives to enhance the post-detonation blast wave. Piston-impact simulations are commonly utilized to predict performance metrics such as detonation speed and strength, as well as assessing the impact and shock sensitivity of these materials. The system response is strongly influenced by the initial particle size distribution and material composition. Multiphase continuum models have been routinely applied at the macroscale to characterize the detonation of solid high explosives over engineering length scales. Current models lack a description of the physically permissible constitutive relations for mass transfer due to general chemical …


Numerical Evaluation And Analysis Of The Adhesion Phenomena In Thermal Barrier Coating Systems Through Bio-Mimicking Plasma Process, Naser Imran Hossain Jan 2013

Numerical Evaluation And Analysis Of The Adhesion Phenomena In Thermal Barrier Coating Systems Through Bio-Mimicking Plasma Process, Naser Imran Hossain

LSU Master's Theses

Thermal Barrier Coatings or TBCs when abbreviated are an imperative part of the thermal protection system of expensive equipment and machinery in the automobile and aeronautics industry. They provide protection to expensive alloy materials upto a temperature of 2700° C without expensive metallurgical additions. Unfortunately, the problem of coating adhesion has plagued the TBC field for years, leading to catastrophic failures in critical TBC systems. Efforts to chemically improve bond strength has not been entirely successful, so the only other efficient way to do this would be some kind of mechanical interlocking that occurs at micro/nano scales. This research work …


Developing Defect-Tolerant Demolding Process In Nanoimprint Lithography, Alborz Amirsadeghi Jan 2013

Developing Defect-Tolerant Demolding Process In Nanoimprint Lithography, Alborz Amirsadeghi

LSU Doctoral Dissertations

Demolding, the process to separate stamp from molded resist, is most critical to the success of ultraviolet nanoimprint lithography (UV-NIL). In the present study we first investigated adhesion and demolding force in UV-NIL for different compositions of a model UV-curable resist containing a base (either tripropyleneglycol diacrylate with shorter chain length or polypropyleneglycol diacrylate with longer chain length), a cross-linking agent (trimethylolpropane triacrylate) and a photoinitiator (Irgacure 651). The demolding force was measured using a tensile test machine after imprinting the UV resist on a silicon stamp. In general, the shorter monomer shows a larger demolding force. Decreasing the cross-linking …


Large Eddy Simulation And Analysis Of Shear Flows In Complex Geometries, Prasad Mohanrao Kalghatgi Jan 2013

Large Eddy Simulation And Analysis Of Shear Flows In Complex Geometries, Prasad Mohanrao Kalghatgi

LSU Doctoral Dissertations

In the present work, large eddy simulation is used to numerically investigate two types of shear flows in complex geometries, (i) a novel momentum driven countercurrent shear flow in dump geometry and (ii) a film cooling flow (inclined jet in crossflow). Verification of subgrid scale model is done through comparisons with measurements for a turbulent flow over back step, present cases of counter current shear and film cooling flow. In the first part, a three dimensional stability analysis is conducted for countercurrent shear flow using Dynamic mode decomposition and spectral analysis. Kelvin-Helmholtz is identified as primary instability mechanism and observed …


Closed Form Solutions To The Optimality Equation Of Minimal Norm Actuation, Jorge Antonio Guerra Jan 2013

Closed Form Solutions To The Optimality Equation Of Minimal Norm Actuation, Jorge Antonio Guerra

LSU Master's Theses

This research focused on the problem of minimal norm actuation in the context of partial natural frequency or pole assignment applied to undamped vibrating systems by state feedback control. The result of the research was the closed form solutions for the minimal norm control input and gain vectors. These closed form solutions should took open loop eigenpairs and the desired frequencies of the controlled system and outputted the optimal controller parameters. This optimization technique ensures that the system’s dynamics will be effectively controlled while keeping the controller effort minimal. The controller must then be able to shift only the desired …


Effects Of Partial Confinement And Local Heating On Healing Efficiencies Of Self-Healing Particulate Composites, Jonah Champagne Jan 2013

Effects Of Partial Confinement And Local Heating On Healing Efficiencies Of Self-Healing Particulate Composites, Jonah Champagne

LSU Master's Theses

Shape memory polymers are smart materials that can be trained to hold a temporary shape through programming and regain their original shape upon heating. Since there discovery in the 1960s, much research has been devoted to the study of these polymers. Of particular interest in recent years is the study of self-healing shape memory polymers. In a previous study, it has been shown that in order for efficient healing to take place in self-healing shape memory polymers, confinement during healing is essential. Moreover, a two-step close-then-heal (CTH) approach to healing was suggested. It was shown that use of this CTH …


Comparison Of In Vivo Human Knee Joint Kinematics Using Axodes, Jacob Hipps Jan 2013

Comparison Of In Vivo Human Knee Joint Kinematics Using Axodes, Jacob Hipps

LSU Master's Theses

The human knee is of particular interest because of its importance in mobility. Pain and stability can be directly related to the motion, or kinematics, of the knee. Many studies have been conducted to quantify human knee kinematics, both in vitro and in vivo. One of the inherent issues with in vivo, skin mounted measurement systems is that they do not account for soft tissue artifact. Compensation for soft tissue artifact has been a difficult challenge for skin mounted tracking systems and has not yet been achieved. Therefore, bone mounted skeletal pins were chosen as the method of gathering kinematic …


Fabrication And Characterization Of A Polymeric Nanofluidic Device For Dna Analysis, Jiahao Wu Jan 2013

Fabrication And Characterization Of A Polymeric Nanofluidic Device For Dna Analysis, Jiahao Wu

LSU Doctoral Dissertations

The growing needs for cheaper and faster sequencing of long biopolymers such as DNA and RNA have prompted the development of new technologies. Among the novel techniques for analyzing these biopolymers, an approach using nanochannel based fluidic devices is attractive because it is a label-free, amplification-free, single-molecule method that can be scaled for high-throughput analysis. Despite recent demonstrations of nanochannel based fluidic devices for analyzing physical properties of such biopolymers, most of the devices have been fabricated in inorganic materials such as silicon, silicon nitride and glass using expensive high end nanofabrication techniques such as focused ion beam and electron …


Mechanistic Analysis And Reduced Order Modeling Of Forced Film Cooling Flows, Guillaume Francois Bidan Jan 2013

Mechanistic Analysis And Reduced Order Modeling Of Forced Film Cooling Flows, Guillaume Francois Bidan

LSU Doctoral Dissertations

Abstract Unforced and forced film cooling jets are investigated in view to develop a reduced order model of the velocity and temperature fields. First, a vertical jet in cross-flow, a configuration well documented at high blowing ratios, is investigated at low blowing ratios using experimental visualizations and large eddy simulations. The unforced study reveals that dominant structures at low blowing ratio can be significantly different from the ones formed at high blowing ratio and describes their evolution and transition as the blowing ratio is changed. The forced jet investigations extend the results of past numerical studies in terms of starting …


Thermal Cycling And Thermal Radiation Performances Of Novel Thermal Barrier Coatings, Li Wang Jan 2013

Thermal Cycling And Thermal Radiation Performances Of Novel Thermal Barrier Coatings, Li Wang

LSU Doctoral Dissertations

Thermal barrier coatings (TBCs) play an important role in protecting the superalloy components from the hot gas stream in gas-turbine engines. Driven by the higher inlet temperature of modern gas turbine engines for higher efficiency and less harmful gas emission, exploration of TBC new materials and thermal radiation effects of TBCs have attracted more attentions recently. In this study, thermochemical compatibility of Gd2Zr2O7 (GZ) and yttria-stabilized-zirconia (YSZ) at 1300 ºC was investigated. Single, double and three ceramic-layered GZ based TBCs were prepared and their thermal cycling properties were performed under different thermal conditions. Thermochemical compatibility investigation showed that YSZ tended …


Micro & Nano Scale Mechanical Testing And Assembly With Applications To Metal Based Microsystems, Ke Chen Jan 2013

Micro & Nano Scale Mechanical Testing And Assembly With Applications To Metal Based Microsystems, Ke Chen

LSU Doctoral Dissertations

Metal-based high-aspect-ratio microscale structures (HARMS) are fundamental building blocks for functional metallic micro devices. This dissertation focuses on addressing several problems in fabrication and assembly of metal based microchannel devices. First, the materials’ responses to mechanical deformation at micro & nano scales, namely the mechanical “size effect”, have been explored by molding single crystal Al with long rectangular diamond punches and long wedge shaped indenters. It is noticed that the contact pressure of rectangular punches pressed into single crystal Al strongly depends on the punch width, while that of long wedge shaped indenters depends on the included wedge angle. We …


Measurement Of Continuum Breakdown Using A Disc Spin-Down Experiment In Low Pressure Air, Tathagata Acharya Jan 2013

Measurement Of Continuum Breakdown Using A Disc Spin-Down Experiment In Low Pressure Air, Tathagata Acharya

LSU Doctoral Dissertations

As flow becomes rarefied, a quantity called as the tangential momentum accommodation coefficient (TMAC) becomes important because it is a measure of the momentum transport from a gas molecule to a surface. Very few experimental measurements of continuum breakdown in boundary layer flows exist. All experimental measurements of the TMAC in macro-scale boundary layer flows have been done in the continuum slip and the transition flow regimes. Moreover the experimental apparatus used by previous researchers cannot accommodate for materials that are planar by nature such as those used in the field of aerospace and microfabrication. The objectives of this research …


Liposomal Uptake Of Silver And Gold Nanoparticles, Dipon Chanda Jan 2013

Liposomal Uptake Of Silver And Gold Nanoparticles, Dipon Chanda

LSU Master's Theses

The main objective of this work is to study the liposomal uptake of silver and old nanoparticles. Liposomes were prepared in Heating Method. The phospholipids used to prepare liposomes are 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (16:0 PC); 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (16:0 PG); 1,2-distearoyl-sn-glycero-3-phosphocholine (18:0 PC); 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (18:0 PG).Four different combinations of phospholipids were used to prepare liposomes. In all four combinations two types of phospholipids were used. The liposomes were incubated for 30 minute, 1 hour, 2 hour and 4 hour with silver and gold nanoparticles in streptavidin coated glass slide. All four liposomal formulations had a biotinylated lipid (1-oleoyl-2-[12-biotinyl(aminododecanoyl)]-sn-glycero-3-phosphocholine) which has a string …


Topology And Shape Optimization Of Hydrodynamically–Lubricated Bearings For Enhanced Load-Carrying Capacity, Mohammad Fesanghary Jan 2013

Topology And Shape Optimization Of Hydrodynamically–Lubricated Bearings For Enhanced Load-Carrying Capacity, Mohammad Fesanghary

LSU Doctoral Dissertations

Bearings are basic and essential components of nearly all machinery. They must be designed to work under different loads, speeds, and environments. Of all the performance parameters, load-carrying capacity (LCC) is often the most crucial design constraint. The objective of this research is to investigate different design methodologies that significantly improve the LCC of liquid-lubricated bearings. This goal can be achieved by either altering the surface texture or the bearing geometrical configuration. The methodology used here is based on mathematical topological/shape optimization algorithms. These methods can effectively improve the design performance while avoiding time-consuming trial-and-error design techniques. The first category …


Graph Rigidity-Based Formation Control Of Planar Multi-Agent Systems, Xiaoyu Cai Jan 2013

Graph Rigidity-Based Formation Control Of Planar Multi-Agent Systems, Xiaoyu Cai

LSU Doctoral Dissertations

A multi-agent system is a network of interacting "agents" that collectively perform a complex task. This dissertation is concerned with the decentralized formation control of multi-agent systems moving in the plane. The formation problem is defined as designing control inputs for the agents so that they form and maintain a pre-defined, planar geometric shape. The focus is on three related problems with increasing level of complexity: formation acquisition, formation maneuvering, and target interception. Three different "dynamic" models, also with increasing level of complexity, are considered for the motion of the agents: the single-integrator model, the double-integrator model, and the full …


3d Integration Of Micro- And Nanostructures Into Bio-Analytical Devices, Bahador Farshchian Jan 2013

3d Integration Of Micro- And Nanostructures Into Bio-Analytical Devices, Bahador Farshchian

LSU Doctoral Dissertations

This study aims to develop a process which allows 3D integration of micro and nanostructures in microchannels. A fabrication process was established for the large area integration of hierarchical micro and nanostructures in microchannels. This novel process, which is called 3D molding, takes advantage of an intermediate thin flexible stamp such as PDMS from soft lithography and a hard mold such as brass from hot embossing process. However, the use of a thin intermediate polydimethylsiloxane (PDMS) stamp inevitably causes dimensional changes in the 3D molded channel, with respect to those in the brass mold protrusion and the intermediate PDMS stamp …


Effect Of Surface Roughness On The Efficiency Of Self-Healing Polymers, Ifeanyi Janarus Okoro Jan 2013

Effect Of Surface Roughness On The Efficiency Of Self-Healing Polymers, Ifeanyi Janarus Okoro

LSU Master's Theses

A shape memory polymer (SMP) is a smart material capable of maintaining two distinct shapes depending on its temperature. A SMP is soft at temperatures above its glass transition temperature but hard below it. When copolyester thermoplastic additives are dispersed in a SMP, it becomes a SMP-based particulate composite capable of self-healing at both the molecular level and the structural level. This makes it very desirable for industrial applications. Upon damage to the composite, the surfaces at the damage interface have to come into contact for efficient healing; the shape memory effect, coupled with a confined recovery (healing) process, ensures …