Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Brigham Young University

2009

MEMS

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Piezoresistive Models For Polysilicon With Bending Or Torsional Loads, Gerrit T. Larsen Aug 2009

Piezoresistive Models For Polysilicon With Bending Or Torsional Loads, Gerrit T. Larsen

Theses and Dissertations

This thesis presents new models for determining piezoresistive response in long, thin polysilicon beams with either axial and bending moment inducing loads or torsional loads. Microelectromechanical (MEMS) test devices and calibration methods for finding the piezoresistive coefficients are also presented for both loading conditions. For axial and bending moment inducing loads, if the piezoresistive coefficients are known, the Improved Piezoresistive Flexure Model (IPFM) is used to find the new resistance of a beam under stress. The IPFM first discretizes the beam into small volumes represented by resistors. The stress that each of these volumes experiences is calculated, and the stress …


Piezoresistive Feedback Control Of A Mems Thermal Actuator, Robert K. Messenger, Quentin Theodore Aten, Timothy W. Mclain, Larry L. Howell Jan 2009

Piezoresistive Feedback Control Of A Mems Thermal Actuator, Robert K. Messenger, Quentin Theodore Aten, Timothy W. Mclain, Larry L. Howell

Faculty Publications

Feedback control of MEMS devices has the potential to significantly improve device performance and reliability. One of the main obstacles to its broader use is the small number of on-chip sensing options available to MEMS designers. A method of using integrated piezoresistive sensing is proposed and demonstrated as another option. Integrated piezoresistive sensing utilizes the inherent piezoresistive property of polycrystalline silicon from which many MEMS devices are fabricated. As compliant MEMS structure’s flex to perform their functions, their resistance changes. That resistance change can be used to transduce the structures’ deflection into an electrical signal. The piezoresistive microdisplacement transducer (PMT) …