Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky Dec 2021

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heat pipes are used to transfer heat through phase change in a liquid/vapor contained in a metal tube. They are passive devices that require no pumps to circulate the fluid and can transfer heat far more efficiently than a solid copper rod of the same diameter. They are commonly used in laptop computers where copper heat pipes filled with water take heat away from the CPU and transfer the heat to air through a heat exchanger. Heat pipes were also used in the Kilopower nuclear reactor where higher temperatures required sodium as the working fluid with stainless steel tubes. Computer …


Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra Nov 2021

Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra

Mechanical and Materials Engineering Publications

For several decades, the use of heat exchangers for both heating and cooling applications has been established in industries ranging from process to space heating. Out of the various types of heat exchangers, U-tube heat exchangers are preferred owing to their abilities to handle larger flowrates and their simplicity in construction. U-tube exchangers are often equipped with innards of various forms which facilitate higher heat transfer rates and thermal efficiencies. Although higher heat transfer rates have been established with the addition of internals, there is a lack of coherence on the underlying complex physical phenomena such as heat transfer boundary …


Investigation Of Microdroplet Generation, Morphological Evolution, And Applications Under Quasi-Steady And Dynamic States, Li Shan Aug 2021

Investigation Of Microdroplet Generation, Morphological Evolution, And Applications Under Quasi-Steady And Dynamic States, Li Shan

McKelvey School of Engineering Theses & Dissertations

Microscale droplets are commonly encountered in the fields of materials processing, thermal fluids, and biology. While these droplets are naturally occurring, recent advances in microfabrication have enabled researchers to harness their enhanced transport characteristics for numerous laboratory and industrial applications from controlled chemical synthesis to inkjet printing and thermal management. Smaller droplets have larger specific surface area and a greater perimeter-to-area ratio when resting on a surface (i.e., sessile), which accelerates processes occurring at droplet surfaces like evaporation, chemical reaction, or combustion. The demand for microdroplets with smaller and more uniform sizes has motivated investigation of how such droplets can …


Optimizing Heat Pipes With Partially-Hybrid Mesh-Groove Wicking Structures And Its Capillary-Flowing Analysis By Simulation, Guanghan Huang Jul 2021

Optimizing Heat Pipes With Partially-Hybrid Mesh-Groove Wicking Structures And Its Capillary-Flowing Analysis By Simulation, Guanghan Huang

Theses and Dissertations

Heat pipes are known as efficient two-phase heat transfer devices and widely utilized in thermal management of power plants and electronics. The hybrid mesh-groove wick promises to attain a higher thermal performance of the heat pipe by balancing the permeability and capillarity. However, traditional fully hybrid mesh-groove wick presents considerable condensation thermal resistance due to the condensed quiescent working fluid and thick, saturated wick.

In this study, a novel partially hybrid mesh-groove wick has been proposed to enhance the evaporation of L-shaped copper-ethanol heat pipes. L-shaped heat pipe promotes high-efficient draining of condensed liquid by gravity, while traditional straight-shaped heat …


Binary Particle Mixtures As A Heat Transfer Media In Shell-And-Plate Moving Packed Bed Heat Exchangers, Chase Ellsworth Christen May 2021

Binary Particle Mixtures As A Heat Transfer Media In Shell-And-Plate Moving Packed Bed Heat Exchangers, Chase Ellsworth Christen

Boise State University Theses and Dissertations

Solid particles are being considered in several high temperature thermal energy storage systems and as heat transfer media in concentrated solar power (CSP) plants. The downside of such an approach is the low overall heat transfer coefficients in shell-and-plate moving packed bed heat exchangers caused by the inherently low packed bed thermal conductivity values of the low-cost solid media. Choosing the right particle size distribution of currently available solid media can make a substantial difference in packed bed thermal conductivity, and thus, a substantial difference in the overall heat transfer coefficient of shell-and-plate moving packed bed heat exchangers. Current research …


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …


Edalatpour Receives Nsf Career Award To Study Thermal Radiation In Quantum Materials And Quantum-Sized Distances, Marcus Wolf Mar 2021

Edalatpour Receives Nsf Career Award To Study Thermal Radiation In Quantum Materials And Quantum-Sized Distances, Marcus Wolf

General University of Maine Publications

Components the size of a few atoms, known as quantum materials, can enhance how technology functions and manages its heat. However, little is known about how heat is emitted and exchanged in quantum materials in contrast with their more common counterparts, three-dimensional bulk materials. Sheila Edalatpour, an assistant professor of mechanical engineering at the University of Maine, is studying how the emission of heat changes when the materials involved are quantum-sized, or when they are separated by a gap of the same size as one or multiple atoms.


Open Source Software Problems In Heat Transfer To Explore Assumptions And Models, Benjamin Pepper, Amir Behbahanian, Nick Roberts Jan 2021

Open Source Software Problems In Heat Transfer To Explore Assumptions And Models, Benjamin Pepper, Amir Behbahanian, Nick Roberts

Course Materials

Energy2D software can be downloaded here: http://energy.concord.org/energy2d/

After opening the application, choose File -> Open and select one of the .e2d files available for download here under additional files. Click the Run button to get started.

The main download has a document that provides a detailed description of the adaptation of a freely available software program, Energy2D, for problems focused on the exploration and limitations of assumptions made in models commonly used in an undergraduate heat transfer course. The motivation for creating homework problems that use Energy2D is to explore the accuracy and limitations of the models used in heat …