Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Fabrication And Characterization Of Silver- And Copper-Coated Nylon 6 Forcespun Nanofibers By Thermal Evaporation, Dorina M. Mihut, Karen Lozano, Heinrich D. Foltz Oct 2014

Fabrication And Characterization Of Silver- And Copper-Coated Nylon 6 Forcespun Nanofibers By Thermal Evaporation, Dorina M. Mihut, Karen Lozano, Heinrich D. Foltz

Mechanical Engineering Faculty Publications and Presentations

Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinningR equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited on Nylon …


A Study On The Fluorescent Properties Of Nanoapatite Particles Under Externally Applied Magnetic Fields, Heidi Reid May 2014

A Study On The Fluorescent Properties Of Nanoapatite Particles Under Externally Applied Magnetic Fields, Heidi Reid

TECHxpo

Hydroxyapatite is a naturally occurring mineral found in human bones and teeth. Its chemical formula is: Ca10(PO4)6(OH)2. In this project hydroxyapatite nanoparticles were doped with iron or europium to give the particles magnetic or fluorescent properties, respectively. The magnetic and fluorescent responses of these particles under externally applied magnetic fields has not yet been fully characterized.


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Thermal Conductivity Of Alumina And Silica Nanofluids, Julian Bernal Castellanos Jan 2014

Thermal Conductivity Of Alumina And Silica Nanofluids, Julian Bernal Castellanos

All Graduate Theses, Dissertations, and Other Capstone Projects

This thesis studies the effects of the base fluid, particle type/size, and volumetric concentration on the thermal conductivity of Alumina and Silica nanofluids. The effects of base fluid were observed by preparing samples using ethylene glycol (EG), water, and mixtures of EG/water as the base fluid and Al2O3 (10 nm) nanoparticles. The particles type/size and volumetric concentration effects were tested by preparing samples of nanofluids using Al2O3 (10nm), Al2O3 (150nm), SiO2 (15 nm), and SiO2 (80 nm) nanoparticles and ionized water as base fluid at different volumetric concentrations. All samples were mixed using a sonicator for 30 minutes and a …


Role Of Surface Chemistry In Nanoscale Electrokinetic Transport, Secuk Atalay Jan 2014

Role Of Surface Chemistry In Nanoscale Electrokinetic Transport, Secuk Atalay

Mechanical & Aerospace Engineering Theses & Dissertations

This dissertation work presents the efforts to study the electrofluidics phenomena, with a focus on surface charge properties in nanoscale systems with the potential applications in imaging, energy conversion, ultrafiltration, DNA analysis/sequencing, DNA and protein transport, drug delivery, biological/chemical agent detection and micro/nano chip sensors.

Since the ion or molecular or particle transport and also liquid confinement in nano-structures are strongly dominated by the surface charge properties, in regards of the fundamental understanding of electrofluidics at nanoscale, we have used surface charge chemistry properties based on 2-pK charging mechanism. Using this mechanism, we theoretically and analytically showed the surface charge …