Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2012

Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a validation study involving the full-scale NREL Phase VI two-bladed wind turbine rotor. The ALE–VMS formulation of aerodynamics, based on the Navier–Stokes equations of incompressible flows, is employed in conjunction with weakly enforced essential boundary conditions. We find that the ALE–VMS formulation using linear tetrahedral finite elements is able to reproduce experimental data for the aerodynamic (low-speed shaft) torque and cross-section pressure distribution of the NREL Phase VI rotor. We also find that weak enforcement of essential boundary conditions is critical for obtaining accurate aerodynamics results on relatively coarse boundary layer meshes. The proposed numerical …


Measurement Of Power-Law Creep Parameters By Instrumented Indentation Methods, Caijun Su Aug 2012

Measurement Of Power-Law Creep Parameters By Instrumented Indentation Methods, Caijun Su

Doctoral Dissertations

New experimental methods have been developed to measure the uniaxial power-law creep parameters α [alpha] and n in the relation έ[epsilon dot]=α[alpha]σn[sigma] (έ [epsilon dot] is the creep strain rate and σ [sigma] is the creep stress) from the load, time, displacement and stiffness data recorded during an instrumented indentation experiment performed with a conical or pyramidal indenter. The methods are based on an analysis of Bower et al., which relates the indentation creep rate to the uniaxial creep parameters based on simple assumptions about the constitutive behavior (Bower et al., 1993 …


Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar Jul 2012

Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar

Ming-Chen Hsu

We provide an overview of the Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) and Space–Time Variational Multiscale (ST-VMS) methods we have developed for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction (FSI). The related techniques described include weak enforcement of the essential boundary conditions, Kirchhoff–Love shell modeling of the rotor-blade structure, NURBS-based isogeometric analysis, and full FSI coupling. We present results from application of these methods to computer modeling of NREL 5MW and NREL Phase VI wind-turbine rotors at full scale, including comparison with experimental data.


Comparison Study Between Fem And Sem For Wave Propagation Models Applied To Solids, Shaddy Roberto Castillo Ponton Jan 2012

Comparison Study Between Fem And Sem For Wave Propagation Models Applied To Solids, Shaddy Roberto Castillo Ponton

Open Access Theses & Dissertations

Wave propagation is a field whose application has spread across many disciplines. In the field of structural engineering, wave propagation methods have focused their attention specifically in the area of structural health monitoring and active control of vibrations and noise. Likewise, the development of new methods and their application have been successful in the area of material science with a special emphasis on the field of structural integrity evaluation of anisotropic and inhomogeneous structures (laminated composite structures). The current available analysis tools are inadequate to handle the modeling of complex structures. One-dimensional wave propagation problems in solids are still a …