Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert May 2022

Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert

Mechanical Engineering Undergraduate Honors Theses

Sequencing DNA provides a positive impact for the biomedical community by understanding a wide variety of applications such as human genetics, disease, and pathogens. The reason the Arkansas Micro & Nano Systems lab is involved with research in DNA sequencing is due to the current, leading industry method. Nanopore sequencing was developed by Oxford Nanopore Technology in which its sequencing method separates double stranded DNA to electrically characterize individual nucleotides traveling through a charged nanopore. Unfortunately, nanopore sequencing uses biological materials that require a shelf life and drives high cost. Therefore, the Arkansas Micro & Nano Systems lab has developed …


Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu Jul 2019

Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu

Mechanical & Aerospace Engineering Theses & Dissertations

Polymerase Chain Reaction (PCR) is a relatively novel technique to amplify a few copies of DNA to a detectable level. PCR has already become common in biomedical research, criminal forensics, molecular archaeology, and so on. Many have attempted to develop PCR devices in numerous types for the purpose of the lab-on-chip (LOC) or point-of-care (POC). To use PCR devices for POC lab testing, the price must be lower, and the performance should be comparable to the lab devices. For current practices with the existing methods, the price is pushed up higher partially due to too much dependence on numerous developmental …


Fabrication And Characterization Of A Polymeric Nanofluidic Device For Dna Analysis, Jiahao Wu Jan 2013

Fabrication And Characterization Of A Polymeric Nanofluidic Device For Dna Analysis, Jiahao Wu

LSU Doctoral Dissertations

The growing needs for cheaper and faster sequencing of long biopolymers such as DNA and RNA have prompted the development of new technologies. Among the novel techniques for analyzing these biopolymers, an approach using nanochannel based fluidic devices is attractive because it is a label-free, amplification-free, single-molecule method that can be scaled for high-throughput analysis. Despite recent demonstrations of nanochannel based fluidic devices for analyzing physical properties of such biopolymers, most of the devices have been fabricated in inorganic materials such as silicon, silicon nitride and glass using expensive high end nanofabrication techniques such as focused ion beam and electron …


Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten Jun 2011

Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten

Theses and Dissertations

A novel method for charged macromolecule delivery, called nanoinjection, has been developed at Brigham Young University. Nanoinjection combines micro-fabrication technology, mechanism design, and nano-scale electrical phenomenon to transport exogenous DNA across cell membranes on a nano-featured lance. DNA is electrically accumulated on the lance, precision movements of microelectromechanical systems (MEMS) physically insert the lance into cell, and DNA is electrically released from the lance into the cell. Penetration into the cell is achieved through a two-phase, self-reconfiguring metamorphic mechanism. The surface-micromachined, metamorphic nanoinjector mechanism elevates the lance above the fabrication substrate, then translates in-plane at a constant height as the …