Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang Jan 2023

Numerical Study Of The Time-Periodic Electroosmotic Flow Of Viscoelastic Fluid Through A Short Constriction Microchannel, Jianyu Ji, Shizhi Qian, Armani Marie Parker, Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) is of utmost significance due to its numerous practical uses in controlling flow at micro/nanoscales. In the present study, the time-periodic EOF of a viscoelastic fluid is statistically analyzed using a short 10:1 constriction microfluidic channel joining two reservoirs on either side. The flow is modeled using the Oldroyd-B (OB) model and the Poisson-Boltzmann model. The EOF of a highly concentrated polyacrylamide (PAA) aqueous solution is investigated under the combined effects of an alternating current (AC) electric field and a direct current (DC) electric field. Power-law degradation is visible in the energy spectra of the velocity fluctuations …


Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Zhaotai Wang, Ben Xu, Shuisheng Jiang Jan 2019

Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Zhaotai Wang, Ben Xu, Shuisheng Jiang

Mechanical Engineering Faculty Publications and Presentations

In this paper, a pseudopotential high density ratio (DR) lattice Boltzmann Model was developed by incorporating multi-relaxation-time (MRT) collision matrix, large DR external force term, surface tension adjustment external force term and solid-liquid pseudopotential force. It was found that the improved model can precisely capture the two-phase interface at high DR. Besides, the effects of initial Reynolds number, Weber number, solid wall contact angle (CA), ratio of obstacle size to droplet diameter ( 1 χ ), ratio of channel width to droplet diameter ( 2 χ ) on the deformation and breakup of droplet when impacting on a square obstacle …


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian Jun 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian

Mechanical Engineering Faculty Research

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …