Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

Path Planning Development Framework For Mobile Robots, Lauren-Ann Elizabeth Graham Dec 2023

Path Planning Development Framework For Mobile Robots, Lauren-Ann Elizabeth Graham

Theses and Dissertations

Planetary exploration relies on methods of path planning to achieve autonomous navigation in hazardous environments. Simulating harsh terrain, real-time varying physics, and robotics applications is vital for testing control algorithms here on Earth. Robotics Operating System (ROS) is a set of software libraries and tools that allow you to build and simulate robotic applications. Utilizing ROS, Gazebo, and Blender, a rough terrain simulation framework is created to explore and compare path planning algorithms using various desired robots and maps. ROS supports multiple path planning algorithms given its open-source abilities. This research focuses on path planning implementation of Proportional-Integral-Derivative (PID) control …


Gpu-Enabled Genetic Algorithm Optimization And Path Planning Of Robotic Arm For Minimizing Energy Consumption, Yichuan Cao Jul 2023

Gpu-Enabled Genetic Algorithm Optimization And Path Planning Of Robotic Arm For Minimizing Energy Consumption, Yichuan Cao

Theses and Dissertations

The robotic arm represents a complicated mechanical system and advanced engineering principles in robotics, enabling precise and efficient manipulation and interaction with objects in a variety of applications, such as manufacturing, healthcare, space exploration, and other industries. In most cases, energy consumption of robotic tools has been given little consideration due to their perceived insignificance compared to the benefits they offer. However, the increasing capacity demands of factories and the expanding use of robotic arms necessitate careful evaluation and reduction of energy consumption. In this regard, given a task configuration, adjusting the arm's movement path emerges as one of the …


Autonomous Drone-Based Sensor Package Deployment To The Underside Of Structures, Sabrina Rose Carroll Oct 2020

Autonomous Drone-Based Sensor Package Deployment To The Underside Of Structures, Sabrina Rose Carroll

Theses and Dissertations

The objective of this project is to design, develop and experimentally test an Unmanned Aircraft System (UAS, commonly known as a drone) for the deployment of sensor packages to the underside of structures. This work begins with an in-depth review of existing automation techniques for various drone applications focusing on applications requiring interaction with the environment. Further reviewed is the impact of structures above the UAS during flight on the behavior of the aircraft.

Considering these topics, the development of a custom drone is presented to address the difficulties of delivering a package to the underside of a structure. Starting …


Comparing Efficacy Of Different Dynamic Models For Control Of Underdamped, Antagonistic, Pneumatically Actuated Soft Robots, Morgan Thomas Gillespie Aug 2016

Comparing Efficacy Of Different Dynamic Models For Control Of Underdamped, Antagonistic, Pneumatically Actuated Soft Robots, Morgan Thomas Gillespie

Theses and Dissertations

Research in soft robot hardware has led to the development of platforms that allow for safer performance when working in uncertain or dynamic environments. The potential of these platforms is limited by the lack of proper dynamic models to describe or controllers to operate them. A common difficulty associated with these soft robots is a representation for torque, the common electromechanical relation seen in motors does not apply. In this thesis, several different torque models are presented and used to construct linear state-space models. The control limitations on soft robots are induced by natural compliance inherent to the hardware. This …


Design And Manufacture Of Mesoscale Robot-Actuated Surgical Instruments, Clayton L. Grames Nov 2015

Design And Manufacture Of Mesoscale Robot-Actuated Surgical Instruments, Clayton L. Grames

Theses and Dissertations

Minimally Invasive Surgery (MIS) is a growing field including both laparoscopic androbotic operations. Surgeons and engineers are making continual efforts to reduce the negative effects of procedures on patients. Reducing the size of the surgical instruments is one effective method pursued in this effort. When the instruments approach 3 mm in diameter, they reach a threshold where the entry incisions can be small enough that no scar is left on the patient. Laparoscopic instruments on this scale exist but typically lack wrist articulation and only have 1 degree of freedom (DoF). Alternatively, robotic surgical instruments can achieve high levels of …


A Compliant Mechanism-Based Variable-Stiffness Joint, Jacob Marc Robinson Apr 2015

A Compliant Mechanism-Based Variable-Stiffness Joint, Jacob Marc Robinson

Theses and Dissertations

A review of current variable-stiffness actuators reveals a need for more simple, cost effective, and lightweight designs that can be easily incorporated into a variety of human-interactive robot platforms. This thesis considers the potential use of compliant mechanisms to improve the performance of variable-stiffness actuators. The advantages and disadvantages of various concepts using compliant mechanisms are outlined, along with ideas for further exploration. A new variable-stiffness actuator that uses a compliant flexure as the elastic element has been modeled, built, and tested. This new design involves a variable stiffness joint that makes use of a novel variable transmission. A prototype …


Design And Analysis Of Robotically-Controlled Minimally Invasive Surgical Instruments, Jordan D. Tanner Nov 2014

Design And Analysis Of Robotically-Controlled Minimally Invasive Surgical Instruments, Jordan D. Tanner

Theses and Dissertations

Robot-assisted minimally invasive surgery is used to perform intricate surgical tasks through small incisions using long, slender instruments. The miniaturization of these instruments is advantageous to both surgeon and patient because smaller instruments reduce trauma to surrounding tissue, decrease patient recovery times, and can be used in confined spaces otherwise inaccessible using larger instruments. However, miniaturization of existing designs is limited by friction between moving parts, the volume occupied by the end effector, and manufacturing and assembly constraints. The objective of this work is to develop and analyze concepts that can be used in robot-assisted needlescopic surgery. The concepts are …


Fully Compliant Mechanisms For Bearing Subtraction In Robotics And Space Applications, Ezekiel G. Merriam Apr 2013

Fully Compliant Mechanisms For Bearing Subtraction In Robotics And Space Applications, Ezekiel G. Merriam

Theses and Dissertations

Robotics and space applications represent areas where compliant mechanisms can continue to make a significant impact by reducing costs and weight while improving performance. Because of the nature of these applications, a common need is for bearing replacement mechanisms, or mechanisms that perform the function of a bearing without the complexity and failure modes associated with bearings. Static balancing is a design strategy that attempts to reduce the actuation effort of a mechanism, and has been applied to compliant mechanisms in some applications. Monolithic construction, especially by means of 3D printing technology, is a strategy whereby the mechanism links and …


Design And Evaluation Of A Humanoid Robot For Autism Therapy, Daniel J. Ricks Mar 2010

Design And Evaluation Of A Humanoid Robot For Autism Therapy, Daniel J. Ricks

Theses and Dissertations

Recent evidence has shown that children with autism may behave more pro-socially when interacting with a robot than with a human. The objective of this research is to develop a robotic system for use in the clinical treatment of children with autism. The governing assumption behind this thesis is that using a robot in a clinic, under the guidance of a trained therapist, may lead to therapeutic benefits that may not be achieved without the presence of the robot. The robot Troy was developed to fulfill such a role in a clinical setting. The primary objective was to design a …


Power-Scavenging Mems Robots, Daniel J. Denninghoff Mar 2006

Power-Scavenging Mems Robots, Daniel J. Denninghoff

Theses and Dissertations

This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was …