Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Theses and Dissertations

2017

Carbon

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Design Of Metal Oxides/Metal Sulfides For The Improvement Of Sodium Ion Batteries, David E. Flores Dec 2017

Design Of Metal Oxides/Metal Sulfides For The Improvement Of Sodium Ion Batteries, David E. Flores

Theses and Dissertations

Herein, the improvement in performance for sodium ion batteries (NIBs) is discussed from available literature and work conducted in the laboratory setting to demonstrate the ability of sodium to perform in the world of energy storage. The reason that sodium is being explored as an alternative to Lithium in energy storage devices is because of the potential depletion of the lithium in the world causing lithium prices to surge. Researchers show that many Sn, Sb, Ge, and other composites perform well as anode materials within NIBs. The research conducted in the dissertation applies the Forcespinning method to produce fibers for …


Nanocomposite Bioelectronics For Biopotential Enabled Prosthesis, Dong Sup Lee Jan 2017

Nanocomposite Bioelectronics For Biopotential Enabled Prosthesis, Dong Sup Lee

Theses and Dissertations

Soft material-enabled electronics can demonstrate extreme mechanical flexibility and stretchability. Such compliant, comfortable electronics allow continuous, long-term measurement of biopotentials on the skin. Manufacturing of the stretchable electronic devices is enabled by the recent development combining materials transfer printing and microfabrication. However, the existing method using inorganic materials and multi-layered polymers requires long material preparation time and expensive processing cost due to the requirement of microfabrication tools and complicated transfer printing steps. Here, this study develops a new fabrication method of soft electronics via a micro-replica-molding technique, which allows fast production, multiple use, and low cost by avoiding microfabrication and …