Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Terrence R Meyer

Laminar flow

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy Nov 2015

Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy

Terrence R Meyer

Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 timecorrelated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety …


10 Khz Detection Of Co2 At 4.5 Um By Using Tunable Diode-Laser-Based Difference-Frequency Generation, Terrence R. Meyer, Sukesh Roy, Thomas N. Anderson, Robert P. Lucht, Rodolfo Barron-Jimenez, James R. Gord Oct 2005

10 Khz Detection Of Co2 At 4.5 Um By Using Tunable Diode-Laser-Based Difference-Frequency Generation, Terrence R. Meyer, Sukesh Roy, Thomas N. Anderson, Robert P. Lucht, Rodolfo Barron-Jimenez, James R. Gord

Terrence R Meyer

A compact, high-speed tunable, diode-laser-based mid-infrared (MIR) laser source has been developed for absorption spectroscopy of CO2 at rates up to 10 kHz. Radiation at 4.5 um with a mode-hop-free tuning range of 80 GHz is generated by difference-frequency mixing the 860 nm output of a distributed-feedback diode laser with the 1064 nm output of a diode-pumped Nd:YAG laser in a periodically poled lithium niobate crystal. MIR absorption spectroscopy of CO2 with a detection limit of 44 ppm m at 10 kHz is demonstrated in a C2H4-air laminar diffusion flame and in the exhaust of a liquid-fueled model gas-turbine combustor.