Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Mechanical Engineering Faculty Scholarship

Reliability

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Electrostatic Levitation: An Elegant Method To Control Mems Switching Operation, Mohammad Mousavi, Mohammad Alzgool, Shahrzad Towfighian Apr 2021

Electrostatic Levitation: An Elegant Method To Control Mems Switching Operation, Mohammad Mousavi, Mohammad Alzgool, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

This paper investigates the characteristics of a micro-switch that uses two side electrodes to open a normally closed switch. The side electrodes surround the xed electrode in the well-known gap-closing electrode configuration. The side electrodes can open a closed switch and be tuned to respond appropriately to outside forces. The combined electrode system dramatically improves the control of a standard gap-closing electrode configuration. In conventional switches, a DC voltage above a certain value closes the switch. To re-open the switch, the voltage difference is reduced to peel o the moving electrode. Currently the contact area is carefully designed to avoid …


A Reliable Mems Switch Using Electrostatic Levitation, Mark Pallay, Shahrzad Towfighian Oct 2018

A Reliable Mems Switch Using Electrostatic Levitation, Mark Pallay, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

In this study an electrostatic MEMS beam is experimentally released from pull-in using electrostatic levitation. A MEMS cantilever with a parallel plate electrode configuration is pulled-in by applying a voltage above the pull-in threshold. Two more electrodes are fixed to the substrate on both sides of the beam to create electrostatic levitation. Large voltage pulses upwards of 100 V are applied to the side electrodes to release the pulled-in beam. A high voltage is needed to overcome the stronger parallel plate electrostatic force and stiction forces, which hold the beam in its pulled-in position. A relationship between bias voltage and …