Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Experimental And Analytical Study Of The Surface Texturing Enhanced Lubrication Elements, Yifan Qiu Jan 2010

Experimental And Analytical Study Of The Surface Texturing Enhanced Lubrication Elements, Yifan Qiu

LSU Doctoral Dissertations

Surface texturing is a method that modifies the frictional surface of a nominally flat tribocomponent by shallow patterns. It is found that with added patterns to the surface of a mechanical face seal or thrust bearing, their tribological performance improves, i.e. both friction and wear rate decrease. The current research concentrates on the analysis of hydrodynamic effect responsible for the performance enhancement of the spiral groove patterns and dimples on mechanical seal-like structures and the experimental evaluation of the tribological behavior of these structures. Surface textures considered are: dimple texture and spiral groove pattern. In the research on the dimple …


Study Of Microstructure Effect On The Thermal Properties Of Yttria-Stabilized-Zirconia Thermal Barrier Coatings Made By Atmospheric Plasma Spray And Pressing Machine, Monica Bohorquez De Silva Jan 2010

Study Of Microstructure Effect On The Thermal Properties Of Yttria-Stabilized-Zirconia Thermal Barrier Coatings Made By Atmospheric Plasma Spray And Pressing Machine, Monica Bohorquez De Silva

LSU Doctoral Dissertations

Thermal barrier coatings (TBCs) are used in gas turbine engines to achieve a higher working temperature and thus lead to better efficiency. Yttria-Stabilized-Zirconia (YSZ), a material with low thermal conductivity, is commonly used as the top coat layer to provide the thermal barrier effect. In this dissertation the thermo-physical properties of a variety of TBCs samples made out of different fabrication techniques were investigated and compared. The first set of samples was fabricated using a pressing machine device to fabricate 0.5 inch diameter disk shaped YSZ-Al2O3 samples. The YSZ-Al2O3 powder mixture was made of 0, 1, 2, 3, 4 and …


Elastohydrodynamic Analysis Of Spur Gears Using Load-Sharing Concept: Running-In And Steady-State, Saleh Akbarzadeh Jan 2010

Elastohydrodynamic Analysis Of Spur Gears Using Load-Sharing Concept: Running-In And Steady-State, Saleh Akbarzadeh

LSU Doctoral Dissertations

Gears are widely used in industry and hence their performance is of vital importance. Under the typical operating conditions of gears, the lubricant layer formed between the teeth of the pinion and the gear cannot completely separate the surfaces and contact of asperities of the pinion and gear occurs. This case is usually referred to as mixed lubrication problem. In this research the load-sharing concept has been employed to predict the performance of the pinion-gear system. The load-sharing concept is an efficient method to solve the mixed lubrication problem and is capable to predict the thickness of the lubricant film, …


Macroinstability And Perturbation In Turbulent Stirred Tank Flows, Somnath Roy Jan 2010

Macroinstability And Perturbation In Turbulent Stirred Tank Flows, Somnath Roy

LSU Doctoral Dissertations

Impeller stirred tank reactors (STRs) are commonly used in the chemical processing industries for a variety of mixing and blending technologies. In this research, a numerical study of flow and mixing inside turbulently agitated STRs are carried out. An immersed boundary method (IBM) is utilized to represent moving impeller geometries in the background of multi-block structured curvilinear fluid. The IBM This curvilinear-IBM methodology is further combined with the large eddy simulation (LES) technique to address the issue of modeling unsteady turbulent flows in the STR. Verification of the combined IBM-LES implementation strategy in curvilinear coordinates is done through comparisons with …


Fabrication, Characterization, Modeling And Testing Of A Nanostructured Bulk Thermoelectric Cooler, Dinesh Pinisetty Jan 2010

Fabrication, Characterization, Modeling And Testing Of A Nanostructured Bulk Thermoelectric Cooler, Dinesh Pinisetty

LSU Doctoral Dissertations

New generation micro/nano devices are emerging to monitor, control and act on living systems. Particularly, in the field of cryobiology, there is a need to monitor and control temperature at the cellular level. An important step towards achieving this aim is to fabricate a novel bulk nanostructured thermoelectric cooler (TEC). As a first step towards achieving efficient localized control of temperature in biological systems, Bismuth-telluride (Bi2Te3) and Antimony-Telluride (Sb2Te3) arrays of nanowires and nanotubes were fabricated, characterized and modeled. A thermal conductivity model originally developed by Dames and Chen for superlattice nanowires was extended to nanotubes. Based on this model …


Model-Based Nonlinear Control Of Active Tilting-Pad Bearings, An Wu Jan 2010

Model-Based Nonlinear Control Of Active Tilting-Pad Bearings, An Wu

LSU Doctoral Dissertations

A promising mechanical bearing candidate for active operation is the tilting-pad bearing. The proposed active tilting-pad bearing has linear actuators that radially translate each pad. The use of feedback control in determining the actuator forces allows for the automatic, continuous adjustment of the pad position during the operation of the rotating machine. In the first part of the dissertation, we develop a nonlinear dynamic model of the active bearing system. The hydrodynamic force produced by the fluid film is modeled as a nonlinear, squeeze-film damper plus repellent spring. A model-based nonlinear controller is then designed to exponentially regulate the rotor …


Modeling And Simulation For Shape Memory Polymer Based Self-Healing Syntactic Foam, Wei Xu Jan 2010

Modeling And Simulation For Shape Memory Polymer Based Self-Healing Syntactic Foam, Wei Xu

LSU Doctoral Dissertations

Syntactic foams, renowned for their low density and high mechanical properties, are enjoying continuing growth in various civilian and military sectors. However, like laminated composites, foam cored structures are vulnerable to impact damages and suffering from inabilities in repairing macro-scale cracks. A self-healing mechanism for structural damage is genuinely desired. A recent development in self-healing structural damage is a two-step close then heal (CTH) scheme proposed by Li and Nettles [1] and elucidated by Li and Uppu [2], by mimicking the self-healing process of human skin. This concept has been further demonstrated in Nji and Li’s work [3] that a …


The Effect Of Anisotropic Surface Energy On The Stability Of Micro And Nano Wires, Ping Du Jan 2010

The Effect Of Anisotropic Surface Energy On The Stability Of Micro And Nano Wires, Ping Du

LSU Doctoral Dissertations

A liquid thread of radius R will break up into drops if the axial wavelength of the surface perturbation L > 2πR. If L < 2πR, the thread is stable and will remain intact. This is Rayleigh’s stability criterion based on a continuum model. We use molecular dynamics to simulate the evolution of Lennard-Jones liquid threads with equilibrium radius R = 2.3-6.6, where R has been non-dimensionalized by the distance at which the Lennard-Jones potential equals zero. We find that if R is fixed, the wavelength L is bounded by Lmin and Lmax. For L > Lmax the thread always breaks up and stays as drops, and for L < Lmin the thread remains intact. However, for Lmin < L < Lmax, the thread oscillates continuously among several shapes. The appearance of various shapes can be explained by the energy fluctuation of the system.

We also simulate the evolution of Lennard-Jones nanowires with equilibrium radius R = 1.57, 2.58, 3.59, and 4.60 by molecular dynamics. The wires …