Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Electronic Theses and Dissertations

Daniel Felix Ritchie School of Engineering and Computer Science

Articles 1 - 30 of 80

Full-Text Articles in Entire DC Network

Quantum-Powered Battery Scheduling In Modern Distribution Grids, Diba Ehsani Mar 2024

Quantum-Powered Battery Scheduling In Modern Distribution Grids, Diba Ehsani

Electronic Theses and Dissertations

The rising need for exploiting a novel and evolved computation is an increasing concern in the power distribution system to address the exponential growth of distribution-connected devices. Scheduling numerous battery energy storage systems in an optimal way is one of the emerging challenges that will be more noticeable as the number of batteries, including residential, community, and vehicle batteries, increases in the grid. This thesis focuses on this topic and offers a necessary component in building the quantum-compatible distribution system of the future. Using a constrained quadratic model (CQM) on D-Wave’s hybrid solver as well as a binary quadratic model …


Finite Element Analysis Of Thermal-Mechanical Instabilities In Nonmetallic Friction Composite Material, Joseph-Shaahu Shaahu Mar 2024

Finite Element Analysis Of Thermal-Mechanical Instabilities In Nonmetallic Friction Composite Material, Joseph-Shaahu Shaahu

Electronic Theses and Dissertations

Thermal-mechanical instability (TMI) has been a research topic of interest as it focuses a lot on transportation systems. Thermal-mechanical instability was first noticed in railway and experimentally studied with a pin-to-pin or pin-to-surface setup of sliding contact. The topic has been extended into brakes and clutches which are two of the most common sliding systems most susceptible to thermal buckling and thermoelastic instability (TEI), where thermal buckling and thermoelastic instability are two sub-categories of thermal-mechanical instability. Thermal-mechanical instability is an ongoing research to better understand the phenomenon and the limits at which such instability occurs. This work delved into the …


Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng Nov 2023

Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng

Electronic Theses and Dissertations

For centuries, the manufacturing industry has incorporated metals like copper into friction materials to enhance thermal properties and minimize thermo-mechanical instabilities (TMI) in high-speed sliding systems. Unfortunately, these metals have adverse environmental effects due to the emission of hazardous particulate matter. As a result, there is a growing movement towards adopting next-generation friction materials as an alternative solution.

The study begins by conducting experimental and numerical investigations to examine the instabilities found in metal-based friction materials. The primary objective is to utilize the insights gained from the investigations to computationally explore effective strategies for mitigating various instabilities that may arise …


Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang Nov 2023

Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang

Electronic Theses and Dissertations

Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable issues such as thermal-mechanical instabilities and insufficient strength. In view of it, this dissertation focuses on developing different kinds of materials from simple structure to complex structure and evaluating the material properties with the assistance of molecular dynamics (MD) tools at the nano scale.

First, the concept of the contacted surfaces in friction at the atomic scale was introduced in order to get accurate understanding of the friction process compared …


Exploration Of Motion Capture System To Investigate Human Shoulder Kinematics, Ola Alsaadi Nov 2023

Exploration Of Motion Capture System To Investigate Human Shoulder Kinematics, Ola Alsaadi

Electronic Theses and Dissertations

The glenohumeral joint (GH) is commonly conceptualized as a ball-and-socket joint [1], and its center of rotation (COR) is presumed to coincide with the geometric center of the medial-superior region of the humeral head [2]. Recent research has endorsed improvements in COR estimation through invasive and noninvasive techniques, including cadaver studies, stereophotogrammetry, and motion capture (MOCAP) systems. Despite increased interest in wearable technology within human movement analysis, the problem of COR estimation employing MOCAP systems and its validation against bi-planar fluoroscopy remains relatively unexplored.

This study employed a marker-based MOCAP system to compare the accuracy, error, and precision of three …


Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen Nov 2023

Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen

Electronic Theses and Dissertations

Modern medicine has dramatically improved the lives of many. In orthopaedics, robotic surgery has given clinicians superior accuracy when performing interventions over conventional methods. Nevertheless, while these and many other methods are available to ensure treatments are performed successfully, far fewer methods exist to predict the proper treatment option for a given person. Clinicians are forced to categorize individuals, choosing the best treatment on “average.” However, many individuals differ significantly from the “average” person, for which many of these treatments are designed. Going forward, a method of testing, evaluating, and predicting different treatment options' short- and long-term effects on an …


Changes In Balance With Brain Inflammation: Sensitivity In Dual Motor Mechanisms, Hannah Mcdade Nov 2023

Changes In Balance With Brain Inflammation: Sensitivity In Dual Motor Mechanisms, Hannah Mcdade

Electronic Theses and Dissertations

Concussion assessment in athletes has gained prominence due to potential long-term consequences of traumatic brain injuries. Evaluating balance alterations is crucial for understanding post-injury motor control strategies. This study introduces a novel approach to understanding center of pressure (COP) dynamics during quiet stance tasks for assessing balance impairments in athletes recovering from concussion. Concussed athletes often experience impaired motor function and cognitive deficits, increasing the risk of orthopedic injury. Traditional balance assessments focus on total COP (COPt), overlooking nuanced hip and ankle mechanisms. This research investigates COP variations between constant loading (COPc) and variable loading (COPv) signals in concussed athletes …


Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan Nov 2023

Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan

Electronic Theses and Dissertations

This dissertation focused on modeling specimen-specific soft tissue structures in the context of joint replacement surgery. The research addressed four key aspects. The first study involved developing a workflow for creating finite element models of the hip capsule to replicate its torque-rotational response. Experimental data from ten cadaveric hips were used to calibrate the models, resulting in improved accuracy and relevance for surgical planning and implant design. The second study tackled the challenge of expediting the calibration of mechanical properties of the hip capsule to match patient-specific laxities. A statistical shape function model was proposed to generate patient-specific finite element …


Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins Nov 2023

Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins

Electronic Theses and Dissertations

Osteoarthritis (OA) is a form of arthritis that develops in the joint due to overuse and aging causing pain, discomfort, and disability. Total Knee Arthroplasty (TKA) is a surgical procedure performed when OA symptoms are severe with an estimated 600,000 patients in the United States currently receiving TKA. Studies have reported dissatisfaction of the knee for 14-39% of patients. This study collected knee kinematics before and after surgery using stereo radiography for precise measurement of gait and deep knee flexion activities. Results showed healthy knee kinematics were not restored and no significant changes could be seen from OA kinematics in …


Hemodynamic Assessment Of Y-Incision Aortic Root Enlargement Using Computational Simulations, Astitwa Ghimire Aug 2023

Hemodynamic Assessment Of Y-Incision Aortic Root Enlargement Using Computational Simulations, Astitwa Ghimire

Electronic Theses and Dissertations

The Yang procedure is a new aortic root enlargement technique used to enlarge the aortic annulus by multiple valve sizes. The procedure prevents patient prosthesis mismatch and establishes a viable platform for future valve-in-valve implantation. This study used the Yang procedure to investigate the hemodynamics in the aortic root and bioprosthetic valve regions after aortic root enlargement. Results indicate the velocity magnitude at the sinus regions of a patient who underwent the Yang procedure was slower, indicating risks of flow stasis and thrombosis. Simulation results denote computational models can be created for optimization of surgical procedures.


A Virtual Method For Establishing Femoral Stem Position In Total Hip Arthroplasty, Samuel Mattei Aug 2023

A Virtual Method For Establishing Femoral Stem Position In Total Hip Arthroplasty, Samuel Mattei

Electronic Theses and Dissertations

Total hip arthroplasty (THA) is one of the most successful orthopedic surgeries performed, in which the hip joint is reconstructed to improve functionality and decrease pain in the joint. Despite the success of these procedures, femoral stem misalignment remains an area that influences THA success. The relationship between the femoral stem geometry and implanted femoral stem size and orientation is underreported due to limitations in the collection of radiographic data used for clinical pre-operative templating. Furthermore, the influence of anatomic measurements on the direction and size of the femoral stem are not considered due to imaging technique and difficulties associated …


Finite Element Modeling Of Patient-Specific Total Shoulder Arthroplasty, Ignacio Rivero Crespo Aug 2023

Finite Element Modeling Of Patient-Specific Total Shoulder Arthroplasty, Ignacio Rivero Crespo

Electronic Theses and Dissertations

Total Shoulder Arthroplasty (TSA) is a surgical procedure designed to improve joint functionality by replacing the articulation between the humeral head and the glenoid fossa. Anatomic Total Shoulder Arthroplasty (aTSA) and Reverse Total Shoulder Arthroplasty (rTSA) are two types of replacement surgery to relieve pain and restore function of the shoulder. The overall goal of this study was to evaluate the effects of variation of certain patient and implant alignment parameters that may influence long-term outcomes of these surgical procedures, including kinematics, joint loads and contact mechanics. Computational models of six TSA subjects, three aTSA and three rTSA, were created …


Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell Aug 2023

Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell

Electronic Theses and Dissertations

For applications in the aerospace field, selection of materials for a given design requires an understanding of critical properties, like fatigue and fracture, in addition to static mechanical and physical properties. With the ongoing advancements in metallic additive manufacturing techniques and the interest in applying the process to aerospace applications, there is a clear need to fully characterize properties. Arguably, the most attractive alloy for applications in aerospace is the Ti-6Al-4V alloy. The current dissertation examines the mechanical properties of the alloy, made by the Electron Beam Melting (EBM) Powder Bed Fusion (PBF) method. As illustrated in this work, the …


Fully Coupled Fluid Structure Interaction Simulation Of Bioprosthetic Heart Valves: A Numerical And Experimental Analysis, Masod Sadipour Jun 2023

Fully Coupled Fluid Structure Interaction Simulation Of Bioprosthetic Heart Valves: A Numerical And Experimental Analysis, Masod Sadipour

Electronic Theses and Dissertations

Aortic stenosis impacts approximately 7% of the global population. In the past decade, the role of computational modeling has been becoming considerably important in the design of BHVs. To obtain reliable solutions in computational modeling, it is essential to consider accurate properties of bioprosthetic heart valves (BHVs), such as density and mechanical properties. Previous computational studies assumed (bovine pericardium) BP used in BHVs density was comparable to water or blood. Yet, BP is subjected to multiple treatments like fixation and anti-calcification. In Chapter 2, I measured BP density and its effect on BHV leaflet stress and strain. In the second …


Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani Jun 2023

Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani

Electronic Theses and Dissertations

Osteoarthritis (OA) is the leading cause of disability among the aging population in the United States and is frequently treated by replacing deteriorated joints with metal and plastic components. Developing better quantitative measures of movement quality to track patients longitudinally in their own homes would enable personalized treatment plans and hasten the advancement of promising new interventions. Wearable sensors and machine learning used to quantify patient movement could revolutionize the diagnosis and treatment of movement disorders. The purpose of this dissertation was to overcome technical challenges associated with the use of wearable sensors, specifically Inertial Measurement Units (IMUs), as a …


Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young Jun 2023

Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young

Electronic Theses and Dissertations

While marker-based motion capture remains the gold standard in measuring human movement, accuracy is influenced by soft-tissue artifacts, particularly for subjects with high body mass index (BMI) where markers are not placed close to the underlying bone. Obesity influences joint loads and motion patterns, and BMI may not be sufficient to capture the distribution of a subject’s weight or to differentiate differences between subjects. Subjects in need of a joint replacement are more likely to have mobility issues or pain, which prevents exercise. Obesity also increases the likelihood of needing a total joint replacement. Accurate movement data for subjects with …


The Modernization Of Large Power Transformer Tanks, Babajide O. Williams Jun 2023

The Modernization Of Large Power Transformer Tanks, Babajide O. Williams

Electronic Theses and Dissertations

Due to the current demands placed on the power grid in terms of climate change, increasing urbanization, and terrorist attacks, the U.S. government in response to these demands, mandated that all the grid components be modernized in order to increase their reliability. As a critical component of the grid, Large Power Transformers (LPTs) play a key role in ensuring sustainable power generation and distribution. A literature search performed in this work and the analysis of data retrieved from the search showed that the tanks of these LPTs are critical to their durability, longevity, and reliability. Therefore, the reliability of LPTs …


Improving Quantification Of Mitral Regurgitation Through Computational Fluid Dynamics And Ex Vivo Testing, Alexandra Flowers Jan 2022

Improving Quantification Of Mitral Regurgitation Through Computational Fluid Dynamics And Ex Vivo Testing, Alexandra Flowers

Electronic Theses and Dissertations

Mitral regurgitation (MR) is a prominent cardiac disease affecting more than two million people in the United States alone. In order for patients to receive proper therapy, regurgitant volume must first be quantified. As there are an array of methods to do so, the proximal isovelocity surface area (PISA) method continues to be the most accurate and clinically used method. However, there are some difficulties obtaining the necessary measurements need for this when performing transthoracic echocardiography. This study aims to evaluate and present techniques that may be used to more accurately quantify regurgitation through ex vivo testing and computational fluid …


Monitoring Of State Transitions In Extreme Environment Application Materials Using Fiber Bragg Grating Sensors, Sabuj Khadka Jan 2022

Monitoring Of State Transitions In Extreme Environment Application Materials Using Fiber Bragg Grating Sensors, Sabuj Khadka

Electronic Theses and Dissertations

By embedding both a single fiber Bragg grating (FBG) sensor and a thermocouple (TC) during the manufacturing for extreme environment applications of certain classes of materials such as metals and polymers, a novel in-situ approach was developed to precisely monitor their entire manufacturing processes. This novel monitoring technique was able to identify many characteristic points during the curing of room and high-temperature epoxies and the solidification processes of metal alloys composed of tin and bismuth which were selected in this research purely for verification purposes. Some of the characteristic points identified for the epoxies were: (i) the gel point, (ii) …


Structural And Hemodynamic Analysis Of Transcatheter Aortic Valves, Dong Qiu Jan 2022

Structural And Hemodynamic Analysis Of Transcatheter Aortic Valves, Dong Qiu

Electronic Theses and Dissertations

The transcatheter aortic valve replacement (TAVR) procedure has become a well-established procedure for high, intermediate-risk, and low-risk patients. However, there is limited clinical data on the TAV's long-term durability, unlike SAV devices. Computational simulations can be an alternative way to evaluate the TAV devices. This dissertation aims to conduct structural and hemodynamic analyses on the TAV devices under different conditions using computational simulation approaches.

Initially, the impact of the bicuspid aortic valve on the TAV devices was evaluated. The result indicated that the CoreValve-like supra-annular self-expandable device was likely to have increased stress and strain on the leaflet when it …


Contact Simulation For Evaluating Patient Specific Surgical Guide Stability, Vincent Nierste Jan 2022

Contact Simulation For Evaluating Patient Specific Surgical Guide Stability, Vincent Nierste

Electronic Theses and Dissertations

This study proposes a novel computational method to quantify guide stability for Patient Specific Instrumentation (PSI) guides. A finite element contact model was used to analyze the final position of PSI guides on a femur across a range of loading parameters representing forces applied by a surgeon during operative use. Separate segmentation methods were used for the guide and bone geometry to represent differences between segmentation and actual patient geometry. The region of loading parameters over which the guide exhibited a consistent final position was measured and reported as Guide Stability Score. The model was verified using cadaver specimens for …


Design Of Lower Legs Of Mithra, A High-Performance Backdrivable Humanoid Robot, Drake Taylor Jan 2021

Design Of Lower Legs Of Mithra, A High-Performance Backdrivable Humanoid Robot, Drake Taylor

Electronic Theses and Dissertations

This thesis presents the design of the knee and ankle of Mithra, a new humanoid robot that aims to be an energy-efficient and highly agile machine. Mithra makes use of new optimization metrics for legged robots to develop a system capable of mimicking human movement. A series of low-impedance, high-torque actuator systems were developed with the goal of creating lightweight, powerful, and robust motion. The structure of Mithra's legs mimics the human structure in leg segment length and weight proportions. Detailed design and analysis were conducted in order to allow Mithra to be a robust and maintainable system. Mithra will …


Monitoring Of Overhead Polymer Core Composite Conductors Under Excessive Mechanical Loads Using Fiber Bragg Grating Sensors, Daniel H. Waters Jan 2021

Monitoring Of Overhead Polymer Core Composite Conductors Under Excessive Mechanical Loads Using Fiber Bragg Grating Sensors, Daniel H. Waters

Electronic Theses and Dissertations

This combined experimental and numerical study addresses mechanical effects associated with static and dynamic loading of novel High Temperature Low Sag (HTLS) transmission line polymer core composite conductors. The developed methodology was successfully applied to ACCC® to explain the complex failure mechanisms associated with combined bending and tension loading. Furthermore, the use of Fiber Bragg Grating (FBG) sensors was investigated for the first time to monitor the ACCC® design during installation and in-service.

Transverse low-velocity impacts to the ACCC® conductor having either free or constrained end conditions and large axial tensile loads were performed. It was identified that the most …


Development Of Triangular And Tetrahedral Finite Elements For Solutions To Thermoelastic Instabilities Using Hotspotter, Cortney Samuel Leneave Jan 2021

Development Of Triangular And Tetrahedral Finite Elements For Solutions To Thermoelastic Instabilities Using Hotspotter, Cortney Samuel Leneave

Electronic Theses and Dissertations

The objective of the work presented in this thesis is to develop first-order triangular and tetrahedral elements for solutions to Thermoelastic Instabilities (TEI) regarding sliding friction systems in Hotspotter.

Hotspotter software uses a finite element method and an eigenvalue method and is an important tool because currently no other commercial software exists which solves the TEI problem for critical velocities and wave numbers of a system. Hotspotter currently uses quadrilateral and hexahedral elements for two and three dimensional analysis, respectively. Typically, tri and tet elements are used in industry when doing static and dynamic stress analysis. Therefore, the Hotspotter user …


Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang Jan 2021

Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang

Electronic Theses and Dissertations

Cemented and cementless fixation in total knee arthroplasty (TKA) have been successfully used for decades. As the number of younger and more active patients treated with TKA continues to increase, long-term implant survivorship is of increasing importance. One of the most common complications and hence the reason for revision is mechanical loosening (23.1% of all revised TKA). The loosening mechanisms have been proposed for different fixation types. For cemented fixation, bone remodeling after surgery is regulated by the changes in strain energy density (SED). The recruitment of osteoclasts and osteoblasts is controlled by SED-related signals. Insufficient stimuli can promote bone …


An Accuracy And Precision Analysis Of The Velys™ Robotic Assisted Solution For Total Knee Arthroplasty, Gary Doan Jan 2021

An Accuracy And Precision Analysis Of The Velys™ Robotic Assisted Solution For Total Knee Arthroplasty, Gary Doan

Electronic Theses and Dissertations

Total knee arthroplasty (TKA) is a procedure where the arthritic surfaces of the knee is removed and replaced with a combination of metal and polymer implants that recreates the joint line to restore function and quality of life. Implant alignment is important in the success of a TKA. Modern day conventional instrumentation can be cumbersome in the operating room and can be inaccurate when resecting bone and aligning implants. Patients with large errors in resections and implant orientation are more prone to experience mechanical failures with their TKA. Mechanical failures in primary TKA require revision surgeries which can lead to …


Broadening The Capability Of Kinetics Analysis In Biomechanics, Nicholas Nelson Jan 2021

Broadening The Capability Of Kinetics Analysis In Biomechanics, Nicholas Nelson

Electronic Theses and Dissertations

Two studies are discussed in this manuscript each preceded by a literature review of the topic. The first review and study explore agility movements and the effect that alternative upper designs in shoes might have on ground reaction force measures of performance. The second review and study evaluate methods of predicting ground reaction forces without the use of a force platform. A method of using effective forces and ways of improving its accuracy are evaluated in depth.


Ultrasonic-Based Condition Assessment Of Wooden Utility Poles, Yishi Lee Jan 2020

Ultrasonic-Based Condition Assessment Of Wooden Utility Poles, Yishi Lee

Electronic Theses and Dissertations

More than 300 million utility poles shoulder the utility grid in the United States. However, the ineffectiveness of the current inspection process causes roughly a third of utility poles removed from the service deemed suitable for reuse. Due to the utterly essential role of the power infrastructure, budget shrinkage, and the structural degradation of the modern distribution grid, this Ph.D. dissertation addresses the challenges by proposing a physics-based signal analysis method with a jointly developed ultrasonic UB1000 system c to enhance the objectivity in ultrasonic-based nondestructive evaluation (NDE). The proposed methodology has been deployed commercially in the field and featured …


The Effects And Analysis Of Implant Type And Surgical Approach In Total Hip Arthroplasty Dislocation Resistance, Brittany Marshall Jan 2020

The Effects And Analysis Of Implant Type And Surgical Approach In Total Hip Arthroplasty Dislocation Resistance, Brittany Marshall

Electronic Theses and Dissertations

Total hip arthroplasty (THA) is one of the most successful orthopaedic surgeries performed, in which the hip joint is reconstructed to decrease pain and to improve the functionality to the joint. Although these surgeries are very successful, there still remain areas for improvement, such as failures due to instability and dislocation of the implanted joint. The purpose of this thesis is to investigate the effect of surgical entrance approach on dislocation, the effect of implant type, and the effect of capsule repair and closure. The need to quantify the resistance to dislocation is important in understanding the effect that each …


Effects On Initial Fixation Of Cementless Tibial Trays In Total Knee Arthroplasty, Brooke Fritts Thompson Jan 2020

Effects On Initial Fixation Of Cementless Tibial Trays In Total Knee Arthroplasty, Brooke Fritts Thompson

Electronic Theses and Dissertations

Bone mineral density (BMD), among other factors, largely effect the initial stability of the cementless tibial tray component in a total knee replacement (TKR), where increased motion at the tray-bone interface hinders bony ingrowth. With a lack of bony ingrowth, the cementless implant will not experience long-term success. Understanding which factors influence initial stability yields insight into surgical technique considerations and help inform a surgeon’s implant choice. The objective of this study was to evaluate factors influencing the initial stability of cementless tibial trays using a 6-degree of freedom (6-DOF) robotic joint simulator, the AMTI VIVO, and combined loading scenarios …