Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Entire DC Network

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Residual Stress Models For Large Eddy Simulation Of Stratified Turbulent Flows, Felipe Augusto Ventura De Bragança Alves Oct 2019

Residual Stress Models For Large Eddy Simulation Of Stratified Turbulent Flows, Felipe Augusto Ventura De Bragança Alves

Doctoral Dissertations

The residual stresses and scalar fluxes are required to close the momentum and scalar transport equations in simulations of turbulence that are not fully resolved in space. In stratified turbulence, the stress and fluxes are statistically anisotropic unless the smallest resolved length scale is smaller than the Ozmidov scale and the buoyancy Reynolds number is sufficiently high for there to exist a range of scales that is statistically isotropic. In this work, a tensorial basis set is derived analytically that potentially contains sufficient information about the anisotropic interaction between resolved and residual scales. The residual stress tensor is evaluated by …


Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park Oct 2019

Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park

Doctoral Dissertations

Offshore wind energy has the potential to generate substantial electricity production compared to onshore locations, due to the high-quality wind resource. Offshore wind turbines must endure severe offshore environmental conditions and be cost effective, in order to be sustainable. As a result, load mitigation becomes crucial in successfully enabling deployment of offshore wind turbines. A direct approach to reduce loads in offshore wind turbines is the application of structural control techniques. So far, the application of structural control techniques to offshore wind turbines has shown to be effective in reducing fatigue and extreme loads of turbine structures. However, the majority …


Three Essays On Data-Driven Optimization For Scheduling In Manufacturing And Healthcare, Ekin Koker Oct 2019

Three Essays On Data-Driven Optimization For Scheduling In Manufacturing And Healthcare, Ekin Koker

Doctoral Dissertations

This dissertation consists of three essays on data-driven optimization for scheduling in manufacturing and healthcare. In Chapter 1, we briefly introduce the optimization problems tackled in these essays. The first of these essays deals with machine scheduling problems. In Chapter 2, we compare the effectiveness of direct positional variables against relative positional variables computationally in a variety of machine scheduling problems and we present our results. The second essay deals with a scheduling problem in healthcare: the team primary care practice. In Chapter 3, we build upon the two-stage stochastic integer programming model introduced by Alvarez Oh (2015) to solve …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Cold Spray Deposition Of Polymers – Characterization And Optimization, Zahra Khalkhali Oct 2019

Cold Spray Deposition Of Polymers – Characterization And Optimization, Zahra Khalkhali

Doctoral Dissertations

The use of a cool supersonic gas flow to accelerate solid particles to form bonding upon impact on a substrate is known as cold spray deposition. The kinetic energy of the impacting particle dissipates resulting in the thermal softening and plastic deformation of the particle which leads to a strong bonding between the particle and the surface. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this research, a laboratory-scale cold spray system with the capability of accelerating 10 – 100µm …


Flow-Induced Oscillations In Floating Offshore Wind Turbines, Daniel Carlson Jul 2019

Flow-Induced Oscillations In Floating Offshore Wind Turbines, Daniel Carlson

Doctoral Dissertations

The goal of this thesis is to experimentally study the structural dynamics, wake interaction, and fluid forces on the multiple-degree of freedom systems typical of floating wind turbines. Vortex--surface alignment about flexibly-mounted prisms is studied to investigate the response of barges and semi-submersible hulls, and new results pertaining to the galloping response kink for a prism with dual inline--crossflow resonance is presented. Flow--induced oscillations of a spar model free to rotate in 3D space is replicated and observed as 2D figure--eight orbits about the center of the spar. Methods to suppress the flow from exciting the spar are proposed. The …


Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis Jul 2019

Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis

Doctoral Dissertations

Structural systems are potentially subjected to damage initiating scenarios throughout the course of their service time. Depending on the nature and extent of the damaging event, they may experience significant reduction or even complete loss of their mechanical performance. This dissertation delves into the mechanics of structural systems under the notion of missing members from their domain, investigating types of structural systems: a) multi-story steel framed buildings, and b) materials with a truss-lattice microstructure. Part I of the dissertation investigates the performance of multi-story steel framed buildings under a column removal scenario, developing an analytical framework for their quasi-static robustness …


A Multiline Anchor Concept For Floating Offshore Wind Turbines, Casey Fontana Mar 2019

A Multiline Anchor Concept For Floating Offshore Wind Turbines, Casey Fontana

Doctoral Dissertations

Floating offshore wind turbines (FOWTs) hold great potential for the renewable energy industry, but capital costs remain high. In efforts to increase FOWT substructure efficiency and reduce costs, this thesis investigates a novel multiline anchor concept in which FOWTs share anchors instead of being moored separately. The goal of this thesis is to evaluate the force dynamics, design, and potential cost reduction of the system. Anchor forces are simulated using the NREL 5 MW reference turbine and OC4-DeepCwind semisubmersible platform, and multiline anchor force is computed as the vector sum of the contributing mooring line tensions. The use of a …


Thermodynamic And Economic Analysis Of Several Hybrid Multigeneration Cycles And Waste Heat Recovery Systems Driven By Concentrated Solar Tower, Kasra Mohammadi Mar 2019

Thermodynamic And Economic Analysis Of Several Hybrid Multigeneration Cycles And Waste Heat Recovery Systems Driven By Concentrated Solar Tower, Kasra Mohammadi

Doctoral Dissertations

In recent decades, growth in the world population, economic and living standards have been responsible for substantial increases in global energy consumption. Moreover, exploitation of fossil fuels to supply energy demands has led to global climate change, which is expected to have far-reaching and long-lasting consequences on the planet. These factors have motivated the importance and necessity of developing more efficient ways for energy conservation and generation that avoid the production of greenhouse gases that contribute to climate change. One method to address these issues is to develop combined production such as multigeneration for simultaneous production of electricity, cooling, fresh …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …


Plenum-To-Plenum Heat Transfer Characteristics Under Natural Circulation In A Scaled-Down Prismatic Modular Reactor, Salman Mohammed Alshehri Jan 2019

Plenum-To-Plenum Heat Transfer Characteristics Under Natural Circulation In A Scaled-Down Prismatic Modular Reactor, Salman Mohammed Alshehri

Doctoral Dissertations

“Gas-cooled reactor (GCR) is being developed under the Next Generation Nuclear Plant Program (NGNP) in nuclear engineering studies. As the world searches for an energy source with high energy density, clean, abundant, and storable nature to avoid global warming issues, GCR seems to be a promising solution, particularly the possibility of producing hydrogen. Studying and developing the safety analysis and GCR technologies are required for the optimum design and safety of GCR system. Multiphase Reactors Engineering and Applications Laboratory (mReal) at Missouri University of Science and Technology (S&T) has developed a natural convection heat transfer test facility with one riser …


Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu Jan 2019

Reliability Analysis For Systems With Outsourced Components, Zhengwei Hu

Doctoral Dissertations

"The current business model for many industrial firms is to function as system integrators, depending on numerous outsourced components from outside component suppliers. This practice has resulted in tremendous cost savings; it makes system reliability analysis, however, more challenging due to the limited component information available to system designers. The component information is often proprietary to component suppliers. Motivated by the need of system reliability prediction with outsourced components, this work aims to explore feasible ways to accurately predict the system reliability during the system design stage. Four methods are proposed. The first method reconstructs component reliability functions using limited …


Volumetric Error Compensation For Industrial Robots And Machine Tools, Le Ma Jan 2019

Volumetric Error Compensation For Industrial Robots And Machine Tools, Le Ma

Doctoral Dissertations

“A more efficient and increasingly popular volumetric error compensation method for machine tools is to compute compensation tables in axis space with tool tip volumetric measurements. However, machine tools have high-order geometric errors and some workspace is not reachable by measurement devices, the compensation method suffers a curve-fitting challenge, overfitting measurements in measured space and losing accuracy around and out of the measured space. Paper I presents a novel method that aims to uniformly interpolate and extrapolate the compensation tables throughout the entire workspace. By using a uniform constraint to bound the tool tip error slopes, an optimal model with …


Plasmonic Metamaterial For Structural Color Printing And Spontaneous Emission Control, Wei Wang Jan 2019

Plasmonic Metamaterial For Structural Color Printing And Spontaneous Emission Control, Wei Wang

Doctoral Dissertations

”Plasmon polaritons or plasmons are a collective oscillation movement of free electrons in metal at optical frequencies. The frequency-dependent complex dielectric function makes the metal property at optical frequencies behave totally different with that at other spectral ranges with lower frequency such as infrared and microwaves. This novel property makes the so called plasmonics or nanoplasmonics a rapid growing research field over the past few years. Many innovative concepts and applications have been developed such as perfect absorber, structural color printing, and quantum emitter spontaneous emission enhancement.

In this dissertation two of the most important applications will be addressed. The …


Build Strategy Investigation Of Ti-6al-4v Produced Via A Hybrid Additive Manufacturing Process, Lei Yan Jan 2019

Build Strategy Investigation Of Ti-6al-4v Produced Via A Hybrid Additive Manufacturing Process, Lei Yan

Doctoral Dissertations

“Till now, laser metal deposition (LMD) has been developed with the capability of near-net shape high-performance metal parts fabrication, especially complicated titanium alloys, nickel alloys, and aluminum alloys. However, LMD processed parts usually do not meet end-use requirements without post treatments. In-process part quality inspection and inner features machining are impossible within a single LMD process. Hybrid additive manufacturing (HAM), which integrates additive and subtractive manufacturing in one process, has been proposed to increase the feasibility of complex parts fabrication. This dissertation aims to improve the applications of Ti-6Al-4V parts fabricated via a HAM technique. The first research topic is …


Scaleable Nanomanufacturing Of Metasurfaces Using Microsphere Photolithography, Chuang Qu Jan 2019

Scaleable Nanomanufacturing Of Metasurfaces Using Microsphere Photolithography, Chuang Qu

Doctoral Dissertations

“The cost-effective manufacturing of metasurfaces over large areas is a critical issue that limits their implementations. Microsphere photolithography (MPL) uses a scalable self-assembled microsphere array as an optical element to focus collimated light to nanoscale photonic jets in a photoresist layer. This dissertation investigates the fabrication capabilities, process control, and potential applications of MPL. First, the MPL concept is applied to the fabrication of metasurfaces with engineered IR absorption (e.g. perfect absorption with multiband/broadband and wavelength/polarization dependences). Improving the patterning of the photoresist requires a fundamental understanding the photochemical photonic jet interactions. The dissertation presents a model of the MPL …


Design, Fabrication, And Characterization Of Functionally Graded Materials, Sreekar Karnati Jan 2019

Design, Fabrication, And Characterization Of Functionally Graded Materials, Sreekar Karnati

Doctoral Dissertations

“The aim of this research was to investigate the feasibility of fabricating custom designed, graded materials using Laser Metal Deposition (LMD) that will cater for functionality and unconventional repair. The ultimate goal of the project is to establish the versatility of LMD for fabricating advanced materials and tackling problems that have been conventionally difficult or in cases infeasible. In order to accomplish these goals, this research involved investigations into, the feasibility of using elemental powders as modular feedstocks, the feasibility of fabricating tailored gradients with these custom compositions, and finally leveraging the advantages of grading materials using LMD to successfully …


Active-Passive Dynamic Consensus Filters: Theory And Applications, John Daniel Peterson Jan 2019

Active-Passive Dynamic Consensus Filters: Theory And Applications, John Daniel Peterson

Doctoral Dissertations

”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally …


Characterization Of Aerosols In An Underground Mine, Arash A. Habibi Jan 2019

Characterization Of Aerosols In An Underground Mine, Arash A. Habibi

Doctoral Dissertations

“Diesel-powered engines are a common source of submicron carbon-rich particles. Characterizing morphological and physical attributes of diesel agglomerates is therefore of great importance to be able to identify the source and improve removal technology. Size-segregated sampling was conducted in two phases of underground experiments. Scanning transmission electron microscopy and fast mobility particle sizers were used to determine the size distribution of agglomerates based on particle mobility and projected area diameter. Controlled zone sampling test results were used to determine the morphological characteristics of agglomerates for specific types of diesel equipment both with and without removal strategies. Changes in fractal dimension, …


Deep Understanding Of Degradation In Lithium Ion Batteries Through Experimental And First-Principles Study, Yufang He Jan 2019

Deep Understanding Of Degradation In Lithium Ion Batteries Through Experimental And First-Principles Study, Yufang He

Doctoral Dissertations

"The growing interests in Lithium-ion Batteries (LIBs) have significantly accelerated the development of active materials. However, the key challenge is that electrode materials suffer from degradation, which include transition metal dissolution, solid electrolyte interphase (SEI) layer formation, and mechanical fracture. To address these issues, applying an ultrathin coating onto active materials via Atomic Layer Deposition (ALD) is an efficient way. Although numerious works have been done for active material performance improvement via ALD technology, the fundamental enhancement mechanisms of ALD coating on battery performance improvement are not yet known. Therefore, this dissertation consists of four papers, which focused on the …


Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang Jan 2019

Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang

Doctoral Dissertations

"Critical metallic components such as jet engine turbine blades and casting die/mold may be damaged after servicing for a period at harsh working environments such as elevated temperature and pressure, impact with foreign objects, wear, corrosion, and fatigue. Additive manufacturing has a promising application for the refurbishment of such high-costly parts by depositing materials at the damaged zone to restore the nominal geometry. However, several issues such as pre-processing of worn parts to assure the repairability, reconstructing the repair volume to generate a repair tool path for material deposition, and inspection of repaired parts are challenging. The current research aims …


Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu Jan 2019

Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu

Doctoral Dissertations

"Engineers always encounter time-dependent uncertainties that ubiquitously exist, such as the random deterioration of material properties and time-variant loads. Therefore the reliability of engineering systems becomes time-dependent. It is crucial to predict the time-dependent reliability in the design stage, given possible catastrophic consequences of a failure. Although extensive research has been conducted on reliability analysis, estimating the reliability accurately and efficiently is still challenging. The objective of this work is to develop accurate and efficient reliability methodologies for engineering design. The basic idea is the integration of traditional reliability methods with saddlepoint approximation (SPA), which can accurately approximate the tail …


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.


Solvent-Free Additive Manufacturing Of Electrodes For Li-Ion Batteries, Brandon Joshua Ludwig Jan 2019

Solvent-Free Additive Manufacturing Of Electrodes For Li-Ion Batteries, Brandon Joshua Ludwig

Doctoral Dissertations

"A new Li-ion battery electrode manufacturing process using a solvent free additive manufacturing method has been developed. Li-ion battery electrodes consist of active material particles, a binder additive, and a conductive additive. Traditionally, Li-ion battery electrodes are manufacturing using the "slurry casting" technique. In this method, the electrode materials are mixed with a solvent to create a slurry. Electrodes fabricated in this method are readily implemented for small platforms, such as portable electronics. However, this method isn't as economically viable in large platforms due to high material and manufacturing costs. High material and manufacturing costs are mostly attributed to the …


Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li Jan 2019

Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li

Doctoral Dissertations

"The application of metallic glasses has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. In addition, joining metallic glass to crystalline metal is of interest for many applications that require locally tailored functions and properties, but it is challenging. This research describes a promising additive manufacturing technology, i.e., laser-foil-printing, to make high-quality metallic glass parts with large dimensions and complex geometries and to fabricate multi-material components from metallic glass and crystalline metal. In this research, Zr52.5Ti5Al10Ni14.6Cu …


Improvements In Digital Image Correlation And Application In Material Mechanical Test, Yunlu Zhang Jan 2019

Improvements In Digital Image Correlation And Application In Material Mechanical Test, Yunlu Zhang

Doctoral Dissertations

"Digital image correlation (DIC) is a non-contact full-field optical measurement method. With the advantages of high accuracy, low cost, and simple implementation, it has been widely applied in the area of experimental mechanics. In this study, DIC algorithm has been improved in the aspects of the pixel-level searching method and reference frame update strategy. The feature matching based method is proposed to provide an initial guess for all points of interest with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation. The bisection searching strategy is presented to automatically adjust the frame step for varying practical …


Computational Fluid Dynamics Modeling And Comparison Of Advanced Techniques For Heat Transfer Augmentation For Nuclear Applications, Salman Mohammed Alzahrani Jan 2019

Computational Fluid Dynamics Modeling And Comparison Of Advanced Techniques For Heat Transfer Augmentation For Nuclear Applications, Salman Mohammed Alzahrani

Doctoral Dissertations

“Passive safety is the most important feature of NuScale’s reactor designs. Twist tape is one passive heat enhance heat technique. The present research investigated thermo-hydraulic characteristics of natural and forced convection of water under different configurations of twisted tape inserted in tube as well as NuScale rod bundles for uniform wall heat flux using computational fluid dynamics (CFD) using ANSYS Fluent 18.1. Results for twist tape inserted in tube under natural circulation showed that heat transfer enhanced and pressure drop increased to 28% and 102.8% over the plain tube respectively. Regularly spaced tapes, and different widths of the twisted tapes …