Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Browse all Theses and Dissertations

Theses/Dissertations

3D Printing

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Low Velocity Impact And Rf Response Of 3d Printed Heterogeneous Structures, Sandeep Keerthi Jan 2017

Low Velocity Impact And Rf Response Of 3d Printed Heterogeneous Structures, Sandeep Keerthi

Browse all Theses and Dissertations

Three-dimensional (3D) printing, a form of Additive manufacturing (AM), is currently being explored to design materials or structures with required Electro-Mechanical-Physical properties. Microstrip patch antennas with a tunable radio-frequency (RF) response are a great candidate for 3D printing process. Due to the nature of extrusion based layered fabrication; the processed parts are of three-layer construction having inherent heterogeneity that affects structural and functional response. The purpose of this study is to identify the relationship between the anisotropy in dielectric properties of AM fabricated acrylonitrile butadiene styrene (ABS) substrates in the RF domain and resonant frequencies of associated patch antennas and …


Design And Testing Of Scalable 3d-Printed Cellular Structures Optimized For Energy Absorption, Sagar Dilip Sangle Jan 2017

Design And Testing Of Scalable 3d-Printed Cellular Structures Optimized For Energy Absorption, Sagar Dilip Sangle

Browse all Theses and Dissertations

Sandwich panel structures are widely used due to their high compressive and flexural stiffness and strength-to-weight ratios, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures that are often based upon honeycomb topologies. Interest in additive manufacturing (AM), popularly known as 3D printing (3DP), has rapidly grown in past few years. The 3DP method is a layer-by-layer approach for the fabrication of 3D objects. Hence, it is very easy to fabricate complex structures with complex internal features that cannot be manufactured by any other fabrication processes. Due to the …


Low-Velocity Impact Behavior Of Sandwich Panels With 3d Printed Polymer Core Structures, Andrew Joseph Turner Jan 2017

Low-Velocity Impact Behavior Of Sandwich Panels With 3d Printed Polymer Core Structures, Andrew Joseph Turner

Browse all Theses and Dissertations

Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are often based upon honeycomb topologies. The recent progress of additive manufacturing (AM) (popularly known as 3D printing) processes has allowed lattice configurations to be designed with improved thermal-mechanical properties. The aim of this work is to design and print lattice truss structures (LTS) keeping in mind the flexible nature of AM. Several 3D printed core structures were created …


Resilience And Toughness Behavior Of 3d-Printed Polymer Lattice Structures: Testing And Modeling, Mohammed Al Rifaie Jan 2017

Resilience And Toughness Behavior Of 3d-Printed Polymer Lattice Structures: Testing And Modeling, Mohammed Al Rifaie

Browse all Theses and Dissertations

This research focuses on the energy absorption capability of additively manufactured or 3D printed polymer lattice structures of different configurations. The Body Centered Cubic (BCC) lattice structure is currently being investigated by researchers for energy absorption applications. For this thesis, the BCC structure is modified by adding vertical bars in different arrangements to create three additional configurations. Four designs or sets of the lattice structure are selected for comparison including BCC, BCC with vertical bars added to all nodes (BCCV), BCC with vertical bars added to alternate nodes (BCCA), and BCC with gradient arrangements of vertical bars (BCCG). Both experimental …


Feasibility Of Attaining Fully Equiaxed Microstructure Through Process Variable Control For Additive Manufacturing Of Ti-6al-4v, Sarah Louise Kuntz Jan 2016

Feasibility Of Attaining Fully Equiaxed Microstructure Through Process Variable Control For Additive Manufacturing Of Ti-6al-4v, Sarah Louise Kuntz

Browse all Theses and Dissertations

One of the greatest challenges in additive manufacturing is fabricating titanium structures with consistent and desirable microstructure. To date, fully columnar deposits have been achieved through direct control of process variables. However, the introduction of external factors appears necessary to achieve fully equiaxed grain morphology using existing commercial processes. This work introduces and employs an analytic model to relate process variables to solidification thermal conditions and expected beta grain morphology at the surface of and at the deepest point in the melt pool. The latter is required in order to ensure the deposited microstructure is maintained even after the deposition …