Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

A Lifting-Line Approach To Estimating Propeller/Wing Interactions, Doug F. Hunsaker, Deryl O. Snyder Jun 2006

A Lifting-Line Approach To Estimating Propeller/Wing Interactions, Doug F. Hunsaker, Deryl O. Snyder

Mechanical and Aerospace Engineering Faculty Publications

A combined wing and propeller model is presented as a low-cost approach to first-cut modeling of slipstream effects on a finite wing. The wing aerodynamic model employs a numerical lifting-line method utilizing the 3D vortex lifting law along with known 2D airfoil data to predict the lift distribution across a wing for a prescribed upstream flowfield. The propeller/slipstream model uses a blade element theory combined with momentum conservation equations. This model is expected to be of significant importance in the design of tail-sitter vertical take-off and landing (VTOL) aircraft, where the propeller slipstream is the primary source of air flow …


Design Of 'Iris', A Small Autonomous Surveillance Uav, Jennifer Boyce, Ryan Carr, Donovan Chipman, Greg Larson, Nathan Hopkins, Doug F. Hunsaker, W. Jerry Bowman Jan 2006

Design Of 'Iris', A Small Autonomous Surveillance Uav, Jennifer Boyce, Ryan Carr, Donovan Chipman, Greg Larson, Nathan Hopkins, Doug F. Hunsaker, W. Jerry Bowman

Mechanical and Aerospace Engineering Faculty Publications

This paper documents the design process used for a small autonomous surveillance UAV. The most significant requirements for the plane were size (man-packable), endurance (about 1 hour) and cost (essentially disposable). The plane that resulted, named "Iris", is a tailless plane with a 45 cm wing span and a total mass of less than 200g. During flight tests, it achieved an endurance of 52 minutes. The estimated cost to manufacture the planes was $343, excluding the autopilot.